Skip to main content

Quantitative Identification of Volatile Organics by SAW Sensor Transients ‒ Comparative Performance Analysis of Fuzzy Inference and Partial-Least-Square-Regression Methods

  • Conference paper
Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 247))

Abstract

We present a comparative performance analysis between three methods (fuzzy c-means and fuzzy subtractive clustering based fuzzy inference systems and partial-least-square regression) for simultaneous determination of vapor identity and concentration in gas sensing applications. Taking poly-isobutylene coated surface acoustic wave sensor transients for measurements we analyzed simulated data for seven volatile organic compounds by applying these methods as a function of polymer film thickness. The sensor transients were represented by discrete wavelet approximation coefficients. It is found that PLS regression performs most optimally for both discrimination between vapor identities and simultaneous estimation of their concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yadava, R.D.S.: Modeling, Simulation and Information Processing for Development of a Polymeric Electronic Nose System. In: Korotcenkov, G. (ed.) Chemical Sensors – Simulation and Modelling, ch. 10, pp. 411–502. Momentum Press, New York (2012)

    Google Scholar 

  2. Vilanova, X., Llobet, E., Alcubilla, R., Sueiras, J.E., Correig, X.: Analysis of the Conduc-tance Transient in Thick-Film Tin Oxide Gas Sensors. Sens. Actuat. B 31, 175–180 (1996)

    Article  Google Scholar 

  3. Llobet, E., Brezmes, J., Vilanova, X., Sueiras, J.: Qualitative and Quantitative Analysis of Volatile Organic Compounds Using Transient and Steady-State Responses of Thick-Film Tin Oxide Gas Sensor Array. Sens. Actuat. B 41, 13–21 (1997)

    Article  Google Scholar 

  4. Hines, E.L., Llobet, E., Gardner, J.W.: Electronic noses: A review of signal processing techniques. IEE Proc. Circuits, Devices System 156, 297–309 (1999)

    Article  Google Scholar 

  5. Osuna, R.G., Nagle, H.T., Schiffman, S.S.: Transient Response Analysis of an Electronic Nose Using Multi-Exponential Models. Sens. Actuat. B 61, 170–182 (1999)

    Article  Google Scholar 

  6. Hoyt, S., McKennoch, S., Wilson, D.M.: Transient Response Chemical Discrimination Module. Proc. of IEEE Sensors 1, 376–381 (2002)

    Article  Google Scholar 

  7. Phaisangittisagul, E., Nagle, H.T.: Sensor Selection for Machine Olfaction Based on Tran-sient Feature Extraction. IEEE Trans. Instrum. Meas. 57, 369–378 (2008)

    Article  Google Scholar 

  8. Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of Machine Olfaction. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  9. Francesco, F.D., Fuoco, R., Trivella, M.G., Ceccarini, A.: Breath Analysis: Trends in Techniques and Clinical Applications. Microchem. J. 79, 405–410 (2005)

    Article  Google Scholar 

  10. Tothil, I.E.: Rapid and On-Line Instrumentation for Food Quality Assurance. CRC Press (2003)

    Google Scholar 

  11. Rogers, E.K.: Handbook of Biosensors and Electronic Noses: Medicine, Food and the Environment. CRC Press (1997)

    Google Scholar 

  12. Singh, P., Yadava, R.D.S.: Effect of Film Thickness and Viscoelasticity on Separability of Vapour Classes by Wavelet and Principal Component Analyses of Polymer-Coated Surface Acoustic Wave Sensor Transients. Meas. Sci. Technol. 22, 025202 (15pp) (2011)

    Google Scholar 

  13. Singh, P., Yadava, R.D.S.: Enhancing Chemical Identification Efficiency by SAW Sensor Transients Through a Data Enrichment and Information Fusion Strategy—A Simulation Study. Meas. Sci. Technol. 24, 055109 (13pp) (2013)

    Google Scholar 

  14. Singh, P., Yadava, R.D.S.: A Fusion Approach to Feature Extraction by Wavelet Decom-position and Principal Component Analysis in Transient Signal Processing of SAW Odor Sensor Array. Sens. Transducers J. 126, 64–73 (2011)

    Google Scholar 

  15. Singh, P., Yadava, R.D.S.: Feature Extraction by Wavelet Decomposition of Surface Acoustic Wave Sensor Array Transients. Def. Sci. J. 60, 377–386 (2010)

    Google Scholar 

  16. Singh, P., Yadava, R.D.S.: Discrete Wavelet Transform and Principal Component Analysis Based Vapor Discrimination by Optimizing Sense-and-Purge Cycle Duration of SAW Chemical Sensor Transients. In: IEEE Conf. on Computational Intelligence and Signal Proc-essing (CISP 2012), pp. 71–75 (2012)

    Google Scholar 

  17. Singh, P., Yadava, R.D.S.: Wavelet Based Fuzzy Inference System for Simultaneous Identification and Quantitation of Volatile Organic Compounds Using SAW Sensor Transients. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 319–327. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  19. Martin, S.J., Frye, G.C., Senturia, S.D.: Dynamics and Response of Polymer-Coated Sur-face Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance. Analyt. Chem. 66, 2201–2219 (1994)

    Article  Google Scholar 

  20. Yadava, R.D.S., Kshetrimayuma, R., Khaneja, M.: Multifrequency Characterization of Viscoelastic Polymers and Vapor Sensing Based on SAW Oscillators. Ultrasonics 49, 638–645 (2009)

    Article  Google Scholar 

  21. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Google Scholar 

  22. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy c-Means Clustering Algorithm. Comp. & Geosciences 10, 191–203 (1984)

    Article  Google Scholar 

  23. Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. J. of Intelligent & Fuzzy Syst. 2, 267–278 (1994)

    MathSciNet  Google Scholar 

  24. Chiu, S.: Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification. In: Dubois, D., Prade, H., Yager, R. (eds.) Fuzzy Information Engineering: A Guided Tour of Applications, ch. 9. John Wiley & Sons, New York (1997)

    Google Scholar 

  25. Adams, M.J.: Chemometrics in Analytical Spectroscopy. The Royal Society of Chemistry, Cambridge (2004)

    Google Scholar 

  26. Geladi, P., Kowalski, R.: Partial Least Squares Regression (PLS): A Tutorial. Analytica Chimica Acta 185, 1–17 (1986)

    Article  Google Scholar 

  27. Wold, S., Sjöström, M., Eriksson, L.: PLS-Regression: A Basic Tool of Chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–130 (2001)

    Article  Google Scholar 

  28. Abdi, H.: Partial Least Squares Regression. In: Lewis, B.M., Bryman, A., Futing, T. (eds.) Encyclopaedia of Social Science Research Methods Thousand Oaks (CA), Sage (2003)

    Google Scholar 

  29. Tan, Y., Shi, L., Tong, W., Hwang, G.T.G., Wang, C.: Multi-Class Tumor Classification by Discriminant Partial Least Squares. Comput. Bio. and Chem. 28, 235–244 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Singh, P., Yadava, R.D.S. (2014). Quantitative Identification of Volatile Organics by SAW Sensor Transients ‒ Comparative Performance Analysis of Fuzzy Inference and Partial-Least-Square-Regression Methods. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. Advances in Intelligent Systems and Computing, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-02931-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02931-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02930-6

  • Online ISBN: 978-3-319-02931-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics