Skip to main content

The Role of Duty Cycle in a Three Cell Central Pattern Generator

  • Chapter
  • First Online:
  • 845 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We describe a novel computational approach to reduce detailed models of central pattern generation to an equationless mapping that can be studied geometrically. Changes in model parameters, coupling properties, or external inputs produce qualitative changes in the mapping. These changes uncover possible biophysical mechanisms for control and modulation of rhythmic activity. Our analysis does not require knowledge of the equations that model the system, and so provides a powerful new approach to studying detailed models, applicable to a variety of biological phenomena beyond motor control. We demonstrate our technique on a motif of three reciprocally inhibitory cells that is able to produce multiple patterns of bursting rhythms. In particular, we examine the qualitative geometric structure of two-dimensional maps for phase lag between the cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Marder, R.L. Calabrese, Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)

    Google Scholar 

  2. F. Skinner, N. Kopell, E. Marder, Mechanisms for oscillation and frequency control in networks of mutually inhibitory relaxation oscillators. J. Comput. Neurosci. 1, 69–97 (1994)

    Article  MATH  Google Scholar 

  3. A. Selverston, Model Neural Networks and Behavior (Plenum Press, New York, 1985)

    Google Scholar 

  4. K.L. Briggman, W.B. Kristan, Multifunctional pattern generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008)

    Article  Google Scholar 

  5. W.B. Kristan, R.L. Calabrese, W.O. Friesen, Neuronal basis of leech behaviors. Prog. Neurobiol. 76, 279–327 (2005)

    Article  Google Scholar 

  6. C.C. Canavier, D.A. Baxter, J.W. Clark, J.H. Byrne, Control of multistability in ring circuits of oscillators. Biol. Cybern. 80, 87–102 (1999)

    Article  MATH  Google Scholar 

  7. G.B. Ermentrout, K. Kopell, Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95, 1259–1264 (1998)

    Article  Google Scholar 

  8. R. Milo, et al., Science 298, 824–827 (2002)

    Google Scholar 

  9. A. Prinz, D. Bucher, E. Marder, Similar network activity from disparate circuit parameters. Nat. Neurosci. 7(12), 1345–1352 (2004)

    Article  Google Scholar 

  10. M.I. Rabinovich, P. Varona, A.I. Selverston, H.D. Abarbanel, Dynamical principles in neuroscience. Rev. Modern. Phys. 78(4), 1213–1265 (2006)

    Article  Google Scholar 

  11. O. Sporns, R. Kötter, Motifs in brain networks. PLoS Biol. 2(11), 1910–1918 (2004)

    Google Scholar 

  12. A. Shilnikov, R. Gordon, I. Belykh, Polyrhythmic synchronization in bursting network motif. Chaos 18, 037120 (2008)

    Article  MathSciNet  Google Scholar 

  13. N. Kopell, D. Somers, Rapid synchronization through fast threshold modulation. Biol. Cybern. 68(5), 393–407 (1993)

    Article  Google Scholar 

  14. A. Shilnikov, G. Cymbalyuk, Transition between tonic-spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101-4 (2005)

    Google Scholar 

  15. I. Belykh, A. Shilnikov, When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101, 078102-4 (2008)

    Google Scholar 

  16. J. Wojcik, A.L. Shilnikov, Order parameter for bursting polyrhythms in multifunctional central pattern generators. Phys. Rev. E 83, 056209-6 (2011)

    Google Scholar 

  17. J. Wojcik, Neural Cartography: Computer Assisted Poincaré Return Mappings for Biological Oscillations Mathematics Dissertations. Paper 10. http://digitalarchive.gsu.edu/math_diss/10 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Wojcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wojcik , J., Clewley, R., Shilnikov, A. (2014). The Role of Duty Cycle in a Three Cell Central Pattern Generator. In: In, V., Palacios, A., Longhini, P. (eds) International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012). Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02925-2_29

Download citation

Publish with us

Policies and ethics