Skip to main content

Effect of Voltage Oscillations on Response Properties in a Model of Sensory Hair Cell

  • Chapter
  • First Online:
International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012)

Part of the book series: Understanding Complex Systems ((UCS))

  • 877 Accesses

Abstract

Sensory hair cells in auditory and vestibular organs rely on active mechanisms to achieve high sensitivity and frequency selectivity. Recent experimental studies have documented self-sustained oscillations in hair cells of lower vertebrates on two distinct levels. First, the hair bundle can undergo spontaneous mechanical oscillations. Second, somatic electric voltage oscillations across the baso-lateral membrane of the hair cell have been observed. We develop a biophysical model of the bullfrog’s saccular hair cell consisting of two compartments, mechanical and electrical, to study how the mechanical and the voltage oscillations interact to produce coherent self-sustained oscillations and how this interaction contributes to the overall sensitivity and selectivity of the hair cell. The model incorporates nonlinear mechanical stochastic hair bundle system coupled bi-directionally to a Hodgkin-Huxley type system describing somatic ionic currents. We isolate regions of coherent spontaneous oscillations in the parameter space of the model and then study how coupling between compartments affects sensitivity of the hair cell to external mechanical perturbations. We show that spontaneous electrical oscillations may enhance significantly the sensitivity and selectivity of the hair cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Fettiplace, C. Hackney, The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7(1), 19–29 (2006)

    Article  Google Scholar 

  2. A. Hudspeth, Making an effort to listen: mechanical amplification in the ear. Neuron 59(4), 530–545 (2008)

    Article  Google Scholar 

  3. J. Ashmore, P. Avan, W. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. Hackney, A. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. Sacchi, B. Canlon, The remarkable cochlear amplifier. Hear. Res. 266, 1–17 (2010)

    Article  Google Scholar 

  4. V. Eguiluz, M. Ospeck, Y. Choe, A. Hudspeth, M. Magnasco, Essential nonlinearities in hearing. Phys. Rev. Lett. 84(22), 5232–5235 (2000)

    Article  Google Scholar 

  5. P. Martin, A.J. Hudspeth, Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 96, 14306–14311 (1999)

    Article  Google Scholar 

  6. A.J. Hudspeth, F. Jülicher, P. Martin, A critique of the critical cochlea: Hopf-a bifurcation-is better than none. J. Neurophysiol. 104(3), 1219–1229 (2010)

    Article  Google Scholar 

  7. J. Howard, A. Hudspeth, Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1(3), 189–199 (1988)

    Article  Google Scholar 

  8. P. Martin, A. Mehta, A. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12026–12031 (2000)

    Article  Google Scholar 

  9. R. Eatock, Adaptation in hair cells. Annu. Rev. Neurosci. 23, 285–314 (2000)

    Article  Google Scholar 

  10. R. Fettiplace, A. Ricci, Adaptation in auditory hair cells. Curr. Opin. Neurobiol. 13(4), 446–451 (2003)

    Article  Google Scholar 

  11. G.A. Manley, G.K. Yates, C. Kppl, Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard tiliqua. Hear. Res. 33(2), 181–189 (1988)

    Article  Google Scholar 

  12. G.A. Manley, L. Gallo, Otoacoustic emissions, hair cells, and myosin motors. J. Acoust. Soc. Am. 102(2 Pt 1), 1049–1055 (1997)

    Article  Google Scholar 

  13. G.A. Manley, Evidence for an active process and a cochlear amplifier in nonmammals. J. Neurophysiol. 86(2), 541–549 (2001)

    Google Scholar 

  14. P. Martin, D. Bozovic, Y. Choe, A. Hudspeth, Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J. Neurosci. 23(11), 4533–4548 (2003)

    Google Scholar 

  15. D. Ramunno-Johnson, C. Strimbu, L. Fredrickson, K. Arisaka, D. Bozovic, Distribution of frequencies of spontaneous oscillations in hair cells of the bullfrog sacculus. Biophys. J. 96(3), 1159–1168 (2009). URL PM:19186151

    Article  Google Scholar 

  16. M. Gelfand, O. Piro, M.O. Magnasco, Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko’s cochlea. PLoS One 5(6), e11116 (2010). doi:10.1371/journal.pone.0011116

    Article  Google Scholar 

  17. B. Nadrowski, P. Martin, F. Jülicher, Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proc. Natl. Acad. Sci. U.S.A. 101(33), 12195–12200 (2004)

    Article  Google Scholar 

  18. K. Dierkes, B. Lindner, F. Jülicher, Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles. Proc. Natl. Acad. Sci. U.S.A. 105(48), 18669–18674 (2008)

    Article  Google Scholar 

  19. J. Barral, K. Dierkes, B. Lindner, F. Jülicher, P. Martin, Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification. Proc. Natl. Acad. Sci. U.S.A 107(18), 8079–8084 (2010)

    Article  Google Scholar 

  20. M. Ospeck, V.M. Eguluz, M.O. Magnasco, Evidence of a hopf bifurcation in frog hair cells. Biophys. J. 80(6), 2597–2607 (2001)

    Article  Google Scholar 

  21. L. Catacuzzeno, B. Fioretti, P. Perin, F. Franciolini, Spontaneous low-frequency voltage oscillations in frog saccular hair cells. J. Physiol. 561, 685–701 (2004)

    Article  Google Scholar 

  22. F. Jorgensen, A. Kroese, Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (rana esculenta). Acta Physiol. Scand. 185(4), 271–290 (2005)

    Article  Google Scholar 

  23. M. Rutherford, W. Roberts, Spikes and membrane potential oscillations in hair cells generate periodic afferent activity in the frog sacculus. J. Neurosci. 29(32), 10025–10037 (2009)

    Article  Google Scholar 

  24. L. Han, A. Neiman, Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics. Phys. Rev. E. 81, 041913 (2010)

    Article  Google Scholar 

  25. W. Denk, W. Webb, Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear. Res. 60(1), 89–102 (1992)

    Article  Google Scholar 

  26. D. Bozovic, A. Hudspeth, Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc. Natl. Acad. Sci. U.S.A. 100(3), 958–963 (2003)

    Article  Google Scholar 

  27. D. Ramunno-Johnson, C.E. Strimbu, A. Kao, L.F. Hemsing, D. Bozovic, Effects of the somatic ion channels upon spontaneous mechanical oscillations in hair bundles of the inner ear. Hear. Res. 268(1–2), 163–171 (2010)

    Article  Google Scholar 

  28. T. Holton, A. Hudspeth, The transduction channel of hair cells from the bull-frog characterized by noise analysis. J. Physiol. 375, 195–227 (1986)

    Google Scholar 

  29. J.O. Pickles, D.P. Corey, Mechanoelectrical transduction by hair cells. Trends Neurosci. 15(7), 254–259 (1992)

    Article  Google Scholar 

  30. Y. Choe, M. Magnasco, A. Hudspeth, A model for amplification of hair-bundle motion by cyclical binding of ca2+ to mechanoelectrical-transduction channels. Proc. Natl. Acad. Sci. U.S.A. 95(26), 15321–15326 (1998)

    Article  Google Scholar 

  31. J. Tinevez, F. Jülicher, P. Martin, Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell. Biophys. J. 93(11), 4053–4067 (2007)

    Article  Google Scholar 

  32. Y. Roongthumskul, L. Fredrickson-Hemsing, A. Kao, D. Bozovic, Multiple-timescale dynamics underlying spontaneous oscillations of saccular hair bundles. Biophys. J. 101(3), 603–610 (2011)

    Article  Google Scholar 

  33. D. Ó Maoiléidigh, E.M. Nicola, A.J. Hudspeth, The diverse effects of mechanical loading on active hair bundles. Proc. Natl. Acad. Sci. U.S.A. 109(6), 1943–1948 (2012)

    Article  Google Scholar 

  34. A.B. Neiman, K. Dierkes, B. Lindner, L. Han, A.L. Shilnikov, Spontaneous voltage oscillations and response dynamics of a hodgkin-huxley type model of sensory hair cells. J. Math. Neurosci. 1(1), 11 (2011)

    Article  MathSciNet  Google Scholar 

  35. Y. Kuznetsov. http://www.staff.science.uu.nl/~kouzn101/CONTENT

  36. R. Fettiplace, Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch. 458(6), 1115–1123 (2009). URL PM:19475417

    Article  Google Scholar 

  37. J. Barral, P. Martin, The physical basis of active mechanosensitivity by the hair-cell bundle. Curr. Opin. Otolaryngol. Head Neck Surg. 19(5), 369–375 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Lindner and A. Shilnikov for fruitful discussions. This work was supported in part by the Quantitative Biology Institute at Ohio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami M. Amro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amro, R.M., Neiman, A.B. (2014). Effect of Voltage Oscillations on Response Properties in a Model of Sensory Hair Cell. In: In, V., Palacios, A., Longhini, P. (eds) International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012). Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02925-2_21

Download citation

Publish with us

Policies and ethics