Skip to main content

Laser-Mediated Nanoparticle Synthesis and Self-Assembling

  • Chapter
  • First Online:
Lasers in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 191))

Abstract

Elemental and compound nanoparticles (NPs) are increasingly attractive due to their peculiar physico-chemical properties. Any large scale application of NPs requires a strict control on their synthesis and self-assembling. Inherent to the synthesis stage is the control of size, shape, composition, structure of the single NP. When NPs self-assemble on a suitable substrate the morphology and nanostructure of the NP architecture are the key parameters driving the performance of the resulting artificial surface. Pulsed laser ablation allows to pursue the above goals under different conditions including nanosecond and ultra-short femtosecond laser pulses, as well as an ambient fluid, either a gas at high pressure, or a radiation transparent liquid, besides vacuum. In this chapter we offer an outline of the mechanisms underlying NP synthesis in the above environments and of the most popular models currently recognized in the literature to interpret observed experimental trends. Concerning plasma plume propagation through an ambient gas attention is focused on the prediction versus observation of the size of isolated NPs and on a critical discussion of the morphology—properties relationship of noble metal NP arrays, considering their optical properties in the frame of enhanced vibrational spectroscopies (SERS). Ablation in a liquid of a solid target leads to a chemically stable suspension of different nanostructures in a one-step, environment friendly, clean process. For noble metal NPs the effect of liquid layer thickness and laser spot diameter on the concentration, size distribution and mutual aggregation of the produced NPs is discussed in relation to a more general picture of the process. Irradiation under vacuum with ultra-short fs laser pulses is a clean physical method to synthesize NPs; indeed in the majority of materials, random stackings of NPs, whose size ranges between 10 and 100 nm constitute the deposited film. Selected experiments on NP synthesis upon fs ablation of mainly elemental targets are reviewed focusing mainly on the features of the expanding plasma and on established mechanisms of NP synthesis. Possible lines of future development in the field are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Grelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, ACS Nano 4, 3591 (2010)

    Article  Google Scholar 

  2. P. Biermann, M. Harwitt, Astrophys. J. 241, 105 (1980)

    Article  ADS  Google Scholar 

  3. L. Boufendi, J. Hermann, A. Bouchoule, B. Dubreuil, E. Stoffels, W. Stoffels, M.L. De Giorgi, J. Appl. Phys. 76, 148 (1994)

    Article  ADS  Google Scholar 

  4. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  5. D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)

    Article  ADS  Google Scholar 

  6. T. Yoshida, S. Takeyama, Y. Yamada, K. Mutoh, Appl. Phys. Lett. 68, 1772 (1996)

    Article  ADS  Google Scholar 

  7. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, S. Fraenckel, M. Maman, Y. Lereah, Phys. Rev. B 69, 144119 (2004)

    Article  ADS  Google Scholar 

  8. S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A 92, 907 (2008)

    Article  ADS  Google Scholar 

  9. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  10. X.T. Wang, B.Y. Man, G.T. Wang, Z. Zhao, B.Z. Xu, Y.Y. Zia, L.M. Mei, X.Y. Hu, J. Appl. Phys. 80, 1783 (1996)

    Article  ADS  Google Scholar 

  11. Z. Zhang, P.A. VanRompay, J.A. Nees, P.P. Pronko, J. Appl. Phys. 92, 2867 (2002)

    Article  ADS  Google Scholar 

  12. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 73, 438 (1998)

    Article  ADS  Google Scholar 

  13. S. Noel, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)

    Article  ADS  Google Scholar 

  14. S.I. Anisimov, D. Bäuerle, B.S. Luk’yanchuk, Phys. Rev. B 48, 12076 (1993)

    Article  ADS  Google Scholar 

  15. Y.B. Zel’dovich, Y.P. Raizer, in Physics of Shock Waves and High—Temperature Hydrodynamic Phenomena ed. by W.D. Hayes, R.F. Probstein (Academic Press, New York, 1966)

    Google Scholar 

  16. A.K. Sharma, R.K. Thareja, Appl. Surf. Sci. 243, 68 (2005)

    Article  ADS  Google Scholar 

  17. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002)

    Article  ADS  Google Scholar 

  18. R.F. Wood, J.N. Leboeuf, D.B. Geohegan, A.A. Puretzky, K.R. Chen, Phys. Rev. B 58, 1533 (1998)

    Article  ADS  Google Scholar 

  19. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Phys. Rev. B 67, 224503 (2003)

    Article  ADS  Google Scholar 

  20. F. Neri, P.M. Ossi, S. Trusso, Riv. Nuovo Cimento 34, 103 (2011)

    Google Scholar 

  21. D.B. Geohegan, in Pulsed Laser Deposition of Thin Films ed. by D.B. Chrisey, G.K. Hubler (Wiley, New York, 1994) p. 115

    Google Scholar 

  22. J. Gonzalo, C.N. Afonso, I. Madariaga, J. Appl. Phys. 81, 951 (1997)

    Article  ADS  Google Scholar 

  23. A.V. Rode, E.G. Gamaly, B. Luther–Davies, Appl. Phys. A 70, 135 (2000)

    Article  ADS  Google Scholar 

  24. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)

    Article  ADS  Google Scholar 

  25. A. Bailini, P.M. Ossi, Europhys. Lett. 79, 35002 (2007)

    Article  ADS  Google Scholar 

  26. A. Bailini, P.M. Ossi, A. Rivolta, Appl. Surf. Sci. 253, 7682 (2007)

    Article  ADS  Google Scholar 

  27. F. Neri, P.M. Ossi, S. Trusso, Laser Part. Beams 28, 53 (2010)

    Article  ADS  Google Scholar 

  28. F. Neri, P.M. Ossi, S. Trusso, Rad. Eff. Def. Solids 165, 559 (2010)

    Article  Google Scholar 

  29. C.N. Afonso, J. Gonzalo, R. Serna, J.C.G. de Sandre, C. Ricolleau, C. Grigis, M. Gandais, D.E. Hole, P.D. Townsend, Appl. Phys. A 69, S201 (1999)

    Article  ADS  Google Scholar 

  30. P.O. Jubert, O. Fruchart, C. Meyer, Surf. Sci. 522, 8 (2003)

    Article  ADS  Google Scholar 

  31. P. Ohresser, J. Shen, J. Barthel, M. Zheng, C.V. Mohan, M. Klaua, J. Kirschner, Phys. Rev. B 59, 3696 (1999)

    Article  ADS  Google Scholar 

  32. W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis, Appl. Surf. Sci. 154–155, 345 (2000)

    Article  Google Scholar 

  33. M.S. Tillack, D.W. Blair, S.S. Harilal, Nanotechnology 15, 390 (2004)

    Article  ADS  Google Scholar 

  34. D. Bolgiaghi, A. Miotello, P. Mosaner, P.M. Ossi, G. Radnoczi, Carbon 43, 2122 (2005)

    Article  Google Scholar 

  35. A. Bailini, P.M. Ossi, Carbon 44, 3049 (2006)

    Article  Google Scholar 

  36. F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, C. Cattaneo, M.G. Beghi, P.M. Ossi, C.S. Casari, A. Li Bassi, C.E. Bottani, Catal. Today 116, 69 (2006)

    Article  Google Scholar 

  37. P.M. Ossi, A. Bailini, O. Geszti, G. Radnoczi, Europhys. Lett. 83, 68005 (2008)

    Article  ADS  Google Scholar 

  38. D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 96–98, 131 (1996)

    Article  Google Scholar 

  39. P.M. Ossi, A. Bailini, Appl. Phys. A 93, 645 (2008)

    Article  ADS  Google Scholar 

  40. R.K. Thareja, R.K. Dwivedi, K. Ebihara, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 192, 301 (2002)

    Google Scholar 

  41. G. Dinescu, A. Aldea, M.L. De Giorgi, A. Luches, A. Perrone, A. Zocco, Appl. Surf. Sci. 127–129, 697 (1998)

    Article  Google Scholar 

  42. Z.W. Fu, Q.Z. Qin, M.F. Zhou, Appl. Phys. A 65, 445 (1997)

    Article  ADS  Google Scholar 

  43. S. Trusso, B. Fazio, E. Fazio, F. Neri, F. Barreca, Thin Solid Films 518, 5409 (2010)

    Article  ADS  Google Scholar 

  44. P.M. Ossi, F. Neri, N. Santo, S. Trusso, Appl. Phys. A 104, 829 (2011)

    Article  ADS  Google Scholar 

  45. W.S. Rasband, ImageJ (US National Institute of Health, Bethesda, Maryland) 1997–2005

    Google Scholar 

  46. M. Di Vece, S. Palomba, R.E. Palmer, Phys. Rev. B 72, 073407 (2005)

    Article  ADS  Google Scholar 

  47. J.P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    Article  ADS  Google Scholar 

  48. N.R. Agarwal, F. Neri, S. Trusso, A. Lucotti, P.M. Ossi, Appl. Surf. Sci. 258, 9148 (2012)

    Article  ADS  Google Scholar 

  49. T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112, 8645 (2000)

    Article  ADS  Google Scholar 

  50. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A 79, 1127 (2004)

    Article  ADS  Google Scholar 

  51. A. Meněndez-Manjŏn, P. Wagener, S. Barcikowski, J. Phys. Chem. C 115, 5108 (2011)

    Article  Google Scholar 

  52. E. Fazio, F. Neri, Appl. Surf. Sci. 272, 88 (2013)

    Google Scholar 

  53. S. Link, Z.L. Wang, M.A. ElSayed, J. Phys. Chem. 103, 3529 (1999)

    Article  Google Scholar 

  54. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1996), p. 265

    Google Scholar 

  55. F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, J. Am. Chem. Soc. 125, 1686 (2003)

    Article  Google Scholar 

  56. E. Fazio, P. Calandra, V. Turco Liveri, N. Santo, S. Trusso, Colloids and Surfaces A: Physicochem. Eng. Aspects 392, 171 (2011)

    Article  Google Scholar 

  57. Z. Yan, D.B. Chrisey, J. Photoch, Photobio. C 13, 204 (2012)

    Article  Google Scholar 

  58. B. Holian, D. Grady, Phys. Rev. Lett. 60, 1355 (1988)

    Article  ADS  Google Scholar 

  59. L.V. Zhigilei, Appl. Phys. A 76, 673 (2003)

    Article  Google Scholar 

  60. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  61. D. Perez, L. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  62. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  63. D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, T.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010)

    Article  ADS  Google Scholar 

  64. M.Q. Ye, C.P. Grigoropulos, J. Appl. Phys. 89, 5183 (2001)

    Article  ADS  Google Scholar 

  65. D. Grojo, J. Hermann, A. Perrone, J. Appl. Phys. 97, 063306 (2005)

    Article  ADS  Google Scholar 

  66. Y. Okano, K. Oguri, T. Nishikawa, H. Hakano, Appl. Phys. Lett. 89, 221502 (2006)

    Article  ADS  Google Scholar 

  67. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, Appl. Phys. Lett. 100, 221106 (2012)

    Article  ADS  Google Scholar 

  68. S. Amoruso, B. Toftmann, J. Schou, Phys. Rev. E 69, 056403 (2004)

    Article  ADS  Google Scholar 

  69. T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noel, J. Hermann, M. Sentis, Appl. Surf. Sci. 253, 7656 (2007)

    Article  ADS  Google Scholar 

  70. D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)

    Article  ADS  Google Scholar 

  71. S. Amoruso, G. Ausanio, A.C. Barone, R. Bruzzese, C. Campana, X. Wang, Appl. Surf. Sci. 254, 1012 (2007)

    Article  ADS  Google Scholar 

  72. C. Boulmer-Leborgne, B. Benzerga, J. Perrier, Proc. SPIE 6261, 20 (2006)

    Google Scholar 

  73. C. Boulmer-Leborgne, in Laser-Surface Interactions for New Materials Production ed. by A. Miotello, P.M. Ossi (Springer, Berlin, 2010) p. 125

    Google Scholar 

  74. H. Haberland, in Clusters of Atoms and Molecules ed. by H. Haberland (Springer, Berlin, 1994) p. 205

    Google Scholar 

  75. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  76. M. Moskovits, Rev. Mod. Phys. 57, 783 (1986)

    Article  ADS  Google Scholar 

  77. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  78. N. Micali, F. Neri, P.M. Ossi, S. Trusso, J. Phys. Chem. C 117, 3497 (2013)

    Article  Google Scholar 

  79. A.V. Whitney, R.P. Van Duyne, F. Casadio, J. Raman Spectrosc. 37, 993 (2006)

    Article  ADS  Google Scholar 

  80. I.T. Shadi, B.Z. Chowdhry, M.J. Snowden, R. Withnall, J. Raman Spectrosc. 35, 800 (2004)

    Article  ADS  Google Scholar 

  81. E. Fazio, F. Neri, A. Valenti, P.M. Ossi, S. Trusso, R.C. Ponterio, Appl. Surf. Sci. 278, 259 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo M. Ossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ossi, P.M., Agarwal, N.R., Fazio, E., Neri, F., Trusso, S. (2014). Laser-Mediated Nanoparticle Synthesis and Self-Assembling. In: Castillejo, M., Ossi, P., Zhigilei, L. (eds) Lasers in Materials Science. Springer Series in Materials Science, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-02898-9_8

Download citation

Publish with us

Policies and ethics