Advertisement

An Enhanced Weighted Median Filter for Noise Reduction in SAR Interferograms

  • Wajih Ben Abdallah
  • Riadh Abdelfattah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

In this paper, we describe a new filtering method based on the weighted median filter and the Lopez and Fabregas noise reduction algorithm operating in the wavelet domain. It is developed for the reduction of the impulse phase noise in synthetic aperture radar interferograms (InSAR). Our contribution to the classic weighted median filter consists of using the InSAR coherence map to generate the weights. While the developed approach prioritizes the high-coherence areas to compute the median filter outputs, the computation of the weights depends on the coherence values within the used window. The developed algorithm is then tested on a simulated data set as well as a set of Radarsat-2 raw data and ERS-2 SLC images acquired over the region of Mahdia and Ben Guerden respectively in Tunisia. The results validation is considered through computing the unwrapped phase of the filtered interferogram by using the SNAPHU algorithm.

Keywords

Digital Elevation Model Phase Noise Synthetic Aperture Radar Impulse Noise Phase Unwrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelfattah, R., Nicolas, J.M.: Topographic SAR Interferometry Formulation for High-Precision DEM Generation. In: IEEE Trans. Geosci and Remote Sensing. LNCS, vol. 40(11), pp. 2415–2426Google Scholar
  2. 2.
    Bamler, R., Hartl, P.: Synthetic Aperture Radar Interferometry. Inverse Problems 14 (1998)Google Scholar
  3. 3.
    Massonnet, D., Feigl, K.L.: Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics 36(4), 441–500 (1998)CrossRefGoogle Scholar
  4. 4.
    Zebker, H.A., Villasenor, J.: Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 30(5), 950–959 (1992)CrossRefGoogle Scholar
  5. 5.
    Geudtner, D., Schwabisch, M., Winter, R.: SAR-interferometry with ERS-1 data. In: Proc., PIERS 1994 (1994)Google Scholar
  6. 6.
    Candeias, A., Mura, J., Dutra, L., Moreira, J., Santos, P.: Interferogram phase noise reduction using morphological and modified median filters. In: Proc. IEEE (IGARSS 1995), vol. 1, pp. 166–168 (1995)Google Scholar
  7. 7.
    Fornaro, G., Guarnieri, A.M.: Minimum mean square error space-varying filtering of interferometric sar data. IEEE Trans. Geosci. Remote Sens. 40(1), 11–21 (2002)CrossRefGoogle Scholar
  8. 8.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An Iterative Regularization Method for Total Variation Based Image Restoration. SIAM Journal 4, 460–489 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Xie, X., Pi, Y.: Phase noise filtering and phase unwrapping method based on unscented Kalman filter. Journal of Systems Engineering and Electronics 22(3), 365–372 (2011)CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Van Genderen, J.L.: Comparison of several multi-look processing procedures in INSAR processing for ERS-1,2 tandem mode. In: Proc. of the Fringe, ESA Workshop (1996)Google Scholar
  11. 11.
    Lee, J.S., Hoppel, K.W., Mango, S.A.: Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sensing 32(5), 1017–1027 (1994)CrossRefGoogle Scholar
  12. 12.
    Martinez, C.L., Fàbregas, X.: Modeling and Reduction of SAR Interferometric Phase Noise in the Wavelet Domain. IEEE Trans. Geosci Remote Sensing 40(12), 2553–2566 (2002)CrossRefGoogle Scholar
  13. 13.
    Arce, G.R.: A general weighted median filter structure admitting negative weights. IEEE Trans. on Signal Processing 46(12), 3195–3205 (1998)CrossRefGoogle Scholar
  14. 14.
    Kemao, Q., Gao, W., Wang, H.: Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm. Applied Optics 49(7), 1075–1079 (2010)CrossRefGoogle Scholar
  15. 15.
    Ma, L., Li, Y., Wang, H., Jin, H.: Fast algorithm for reliability-guided phase unwrapping in digital holographic microscopy. Applied Optics 51(36), 8800–8807 (2012)CrossRefGoogle Scholar
  16. 16.
    Chen, K., Xi, J., Yu, Y.: Fast quality-guided phase unwrapping algorithm for 3D profilometry based on object image edge detection. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 64–69 (2012)Google Scholar
  17. 17.
    Lee, J., Papathanassiou, K., Ainsworth, T., Grunes, M., Reigber, A.: A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sensing 36, 1456–1465 (1998)CrossRefGoogle Scholar
  18. 18.
    Vijay Kumar, V.R., Manikandan, S., Vanathi, P.T., Kanagasabapathy, P., Ebenezer, D.: Adaptive Window Length Recursive Weighted Median Filter for Removing Impulse Noise in Images with Details Preservation. ECTI Trans. on Elect. Eng., Electronics and Com. 6(1), 73–80 (2008)Google Scholar
  19. 19.
    Abdelfattah, R., Nicolas, J.M.: Interferometric SAR coherence magnitude estimation using second kind statistics. IEEE Trans. Geosci. Remote Sensing 44, 1942–1953 (2006)CrossRefGoogle Scholar
  20. 20.
    Goldstein, R., Zebker, H., Werner, C.: Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science 23(4), 713–720 (1988)CrossRefGoogle Scholar
  21. 21.
    Hess-Nielsen, N., Wickerhauser, M.: Wavelets and time frequency analysis. Proc. IEEE, Digital Object Identifier 84 (1996)Google Scholar
  22. 22.
    Zhong, H., Tang, J., Zhang, S., Chen, M.: An Improved Quality-Guided Phase-Unwrapping Algorithm Based on Priority Queue. IEEE Geosci. Remote Sensing Letters 8(2), 364–368 (2011)CrossRefGoogle Scholar
  23. 23.
    Kuan, D., Sawchuk, A., Strand, T., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoustics, Speech and Signal Processing 35(3), 373–383 (1987)CrossRefGoogle Scholar
  24. 24.
    Next ESA, All rights reserved (2013), http://nest.array.ca/
  25. 25.
    Chen, C.W., Zebker, H.A.: Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sensing 40(8), 1709–1719 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wajih Ben Abdallah
    • 1
  • Riadh Abdelfattah
    • 1
    • 2
  1. 1.COSIM Lab, Higher School of Communications of TunisUniversity of CarthageTunisia
  2. 2.Département ITI, Institut de Telecom, Technopôle Brest-IroiseTelecom BretagneBrest Cedex 3France

Personalised recommendations