Unsupervised Segmentation for Transmission Imaging of Carbon Black

  • Lydie Luengo
  • Hélène Laurent
  • Sylvie Treuillet
  • Isabelle Jolivet
  • Emmanuel Gomez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


During the last few years, the development of nanomaterials increases in many fields of sciences (biology, material, medicine...) to control physical-chemical properties. Among these materials, carbon black is the oldest one and is widely used as reinforcement filler in rubber products. Nevertheless, the interaction between nanoparticles and polymer matrix is poorly understood. In other words carbon black aggregate’s characteristics are usually obtained by poorly official indirect analyses. This article presents an image processing chain allowing subsequent characterization of the carbon black aggregates. A database of several hundred samples of carbon black images has been collected using transmission electron microscopy. A significant selection of images has been manually expertised for ground truth. Using supervised evaluation criteria, a comparative study is performed with state-of-the-art carbon black segmentation algorithms, highlighting the good performances of the proposed algorithm.


carbon black image processing segmentation transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donnet, J.B., Bansal, R.C., Wang, M.J.: Carbon Black Science and Technology, 2nd edn. Marcel Dekker, New York (1993)Google Scholar
  2. 2.
    ASTM D 2663 - 08: Standard Test Methods for Carbon Black – Dispersion in Rubber (2008)Google Scholar
  3. 3.
    Medalia, A.I.: Morphology of aggregates. I. Calculation of shape and bulkiness factors; application to computer-simulated random flocs. Journal of Colloid and Interface Science 24, 393–404 (1967)CrossRefGoogle Scholar
  4. 4.
    Medalia, A.I., Heckman, F.A.: Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy. Cabot Corporation 567–568 (1969)Google Scholar
  5. 5.
    Burgess, K.A., Scott, C.E., Hess, W.M.: Carbon black morphology. New techniques for characterization. Rubber World 164, 48–53 (1971)Google Scholar
  6. 6.
    Hess, W.M., McDonald, G.C., Urban, E.: Specific Shape Characterization of Carbon Black Primary Units. Rubber Chemistry and Technology 46(1), 204–231 (1973)CrossRefGoogle Scholar
  7. 7.
    ASTM D3849 - 07: Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy (2011)Google Scholar
  8. 8.
    Herd, C.R., McDonald, G.C., Smith, R.E., Hess, W.M.: The Use of Skeletonization for the Shape Classification of Carbon Black Aggregate. Rubber Chemistry and Technology 66(4), 491–509 (1993)CrossRefGoogle Scholar
  9. 9.
    Herd, C.R., McDonald, G.C., Hess, W.M.: Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chemistry and Technology 65(1), 107–129 (1992)CrossRefGoogle Scholar
  10. 10.
    Hess, W.M., Ban, L.L., McDonald, G.C.: Carbon Black Morphology: I. Particule Microstructure. II. Automated em analysis of aggregate size and shape. Rubber Chemistry and Technology 42(4), 1209–1234 (1969)CrossRefGoogle Scholar
  11. 11.
    López-de-Uralde, J., Ruiz, I., Santos, I., Zubillaga, A., Bringas, P.G., Okariz, A., Guraya, T.: Automatic Morphological Categorisation of Carbon Black Nano-aggregates. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 185–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Otsu, N.: Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. SMC-9, 62–66 (1979)Google Scholar
  13. 13.
    Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D., Gauthier, C.: A History of Scanning Electron Microscopy Developments: Towards ‘wet-STEM’ Imaging. Micron 38(4), 390–401 (2007)CrossRefGoogle Scholar
  14. 14.
    MacQueen, J.B.: Some Methods for Classification and Analysis of MultiVariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)Google Scholar
  15. 15.
    Carbon Black User’s Guide, Safety, Health, & Environmental Information (2004)Google Scholar
  16. 16.
    Thibault, G.: Indices de Textures: Application au Classement de Noyaux de Cellules. Doctorale Thesis, University Aix-Marseille (2009)Google Scholar
  17. 17.
    Deng, Y.: Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)CrossRefGoogle Scholar
  18. 18.
    Felzenszwalb, P.F., Huttenlocher, P.D.: Efficient Graph-Based Image Segmentation. Int’l Conf. Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  19. 19.
    Matthews, B.W.: Comparison of the Predicted and Observed Secondary Structure of T4 phage lysozyme. Biochimica and Biophysica Acta 405, 442–451 (1975)CrossRefGoogle Scholar
  20. 20.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  21. 21.
    Hafiane, A., Chabrier, S., Rosenberger, C., Laurent, H.: A New Supervised Evaluation Criterion for Region Based Segmentation Methods. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 439–448. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lydie Luengo
    • 1
    • 3
  • Hélène Laurent
    • 2
    • 3
  • Sylvie Treuillet
    • 3
  • Isabelle Jolivet
    • 1
  • Emmanuel Gomez
    • 1
  1. 1.CDR HUTCHINSONChâlette sur loingFrance
  2. 2.Laboratoire PRISMEENSI de BourgesBourgesFrance
  3. 3.Laboratoire PRISMEPolytechOrleansOrléans cedex 2France

Personalised recommendations