The Divide and Segment Method for Parallel Image Segmentation

  • Thales Sehn Körting
  • Emiliano Ferreira Castejon
  • Leila Maria Garcia Fonseca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


Remote sensing images with large spatial dimensions are usual. Besides, they also include a diversity of spectral channels, increasing the volume of information. To obtain valuable information from remote sensing data, computers need higher amounts of memory and more efficient processing techniques. The first process in image analysis is segmentation, which identifies regions in images. Therefore, segmentation algorithms must deal with large amounts of data. Even with current computational power, certain image sizes may exceed the memory limits, which ask for different solutions. An alternative to overcome such limits is to employ the well-known divide and conquer strategy, by splitting the image into chunks, and segmenting each one individually. However, it arises the problem of merging neighboring chunks and keeping the homogeneity in such regions. In this work, we propose an alternative to divide the image into chunks by defining noncrisp borders between them. The noncrisp borders are computed based on Dijkstra algorithm, which is employed to find the shortest path between detected edges in the images. By applying our method, we avoid the postprocessing of neighboring regions, and therefore speed up the final segmentation.


Remote Sensing Image Segmentation Adjacency Matrix Spectral Channel Adjacency Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. Pattern Analysis and Machine 16 (1994)Google Scholar
  2. 2.
    Baatz, M., Schape, A., Schäpe, M.: Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Wichmann-Verlag (ed.) XII Angewandte Geographische Informationsverarbeitung, pp. 12–23. Herbert Wichmann Verlag, Heidelberg (2000)Google Scholar
  3. 3.
    Bader, D., Jaja, J., Harwood, D., Davis, L.: Parallel algorithms for image enhancement and segmentation by region growing with an experimental study. In: Proceedings of International Conference on Parallel Processing, pp. 414–423 (1996)Google Scholar
  4. 4.
    Bagli, V., Fonseca, L.: Seamless mosaicking via multiresolution analysis and cut line definition. In: Signal and Image Processing. ACTA Press (2006)Google Scholar
  5. 5.
    Bielski, C., Grazzini, J., Soille, P.: Automated morphological image composition for mosaicing large image data sets. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, pp. 4068–4071 (2007)Google Scholar
  6. 6.
    Bins, L., Fonseca, L., Erthal, G., Ii, F.: Satellite imagery segmentation: a region growing approach. Simpósio Brasileiro de Sensoriamento Remoto 8, 677–680 (1996)Google Scholar
  7. 7.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2–16 (2010)CrossRefGoogle Scholar
  8. 8.
    Bradley, B., Jacob, R., Hermance, J., Mustard, J.: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment 106(2), 137–145 (2007)CrossRefGoogle Scholar
  9. 9.
    Câmara, G., Souza, R., Freitas, U., Garrido, J., Li, F.: Spring: Integrating remote sensing and gis by object-oriented data modelling. Computers and Graphics 20(3), 395–403 (1996)CrossRefGoogle Scholar
  10. 10.
    Dial, G., Bowen, H., Gerlach, F., Grodecki, J., Oleszczuk, R.: IKONOS satellite, imagery, and products. Remote Sensing of Environment 88(1-2), 23–36 (2003)CrossRefGoogle Scholar
  11. 11.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische mathematik, 269–271 (1959)Google Scholar
  12. 12.
    Falcão, A., Stolfi, J., Lotufo, R.: The Image Foresting Transform: Theory, Algorithms, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)CrossRefGoogle Scholar
  13. 13.
    Fayyad, U., Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  14. 14.
    Goodchild, M.F.: Geographic information systems and science: today and tomorrow. Annals of GIS 15(1), 3–9 (2009)CrossRefGoogle Scholar
  15. 15.
    Happ, P., Ferreira, R., Bentes, C., Costa, G., Feitosa, R.: Multiresolution segmentation: a parallel approach for high resolution image segmentation in multicore architectures. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2010)Google Scholar
  16. 16.
    Haralick, R., Shapiro, L.: Image segmentation techniques. Applications of Artificial Intelligence II 548, 2–9 (1985)CrossRefGoogle Scholar
  17. 17.
    Hay, G., Castilla, G.: Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In: Blaschke, T., Lang, S., Hay, G. (eds.) Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, chap. 1.4, pp. 75–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Körting, T., Castejon, E., Fonseca, L.: Divide and Segment - An alternative for parallel segmentation. In: Proceedings of XII GeoINFO, pp. 97–104. INPE, Campos do Jordão (2011)Google Scholar
  19. 19.
    Lenkiewicz, P., Pereira, M., Freire, M., Fernandes, J.: A new 3D image segmentation method for parallel architectures. In: 2009 IEEE International Conference on Multimedia and Expo, pp. 1813–1816 (June 2009)Google Scholar
  20. 20.
    Meinel, G., Neubert, M.: A comparison of segmentation programs for high resolution remote sensing data. International Archives of Photogrammetry and Remote Sensing 35(Part B), 1097–1105 (2004)Google Scholar
  21. 21.
    Pinho, C., Silva, F., Fonseca, L., Monteiro, A.: Intra-urban land cover classification from high-resolution images using the C4.5 algorithm. ISPRS Congress Beijing 7 (2008)Google Scholar
  22. 22.
    Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel Hyperspectral Image and Signal Processing. IEEE Signal Processing Magazine 28, 119–126 (2011)CrossRefGoogle Scholar
  23. 23.
    Prassni, J., Ropinski, T., Hinrichs, K.: Uncertainty-aware guided volume segmentation. IEEE Transactions on Visualization and Computer Graphics 16(6), 1358–1365 (2010)CrossRefGoogle Scholar
  24. 24.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  25. 25.
    Singh, D., Heras, D., Rivera, F.: Parallel Seeded Region Growing Algorithm. In: VIII Simposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, Bilbao, Spain (1999)Google Scholar
  26. 26.
    Tan, P., Steinbach, M., Kumar, V., Potter, C., Klooster, S., Torregrosa, A.: Finding Spatio-Temporal Patterns in Earth Science Data. Earth Science, 1–12 (2001)Google Scholar
  27. 27.
    Valencia, D., Lastovetsky, A., O’Flynn, M., Plaza, A., Plaza, J.: Parallel Processing of Remotely Sensed Hyperspectral Images on Heterogeneous Networks of Workstations Using HeteroMPI. IJHPCA, 386–407 (November 2008)Google Scholar
  28. 28.
    Wassenberg, J., Middelmann, W., Sanders, P.: An efficient parallel algorithm for graph-based image segmentation. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1003–1010. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thales Sehn Körting
    • 1
  • Emiliano Ferreira Castejon
    • 1
  • Leila Maria Garcia Fonseca
    • 1
  1. 1.Image Processing Division – DPIBrazil’s National Institute for Space Research – INPESão José dos CamposBrazil

Personalised recommendations