Small Target Detection Improvement in Hyperspectral Image

  • Tao Lin
  • Julien Marot
  • Salah Bourennane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


Target detection is an important issue in the HyperSpectral Image (HSI) processing field. However, current spectral-identification-based target detection algorithms are sensitive to the noise and most denoising algorithms cannot preserve small targets, therefore it is necessary to design a robust detection algorithm that can preserve small targets. This paper utilizes the recently proposed multidimensional wavelet packet transform with multiway Wiener filter (MWPT-MWF) to improve the target detection efficiency of HSI with small targets in the noise environment. The performances of the our method are exemplified using simulated and real-world HSI.


Hyperspectral image small target detection multiway Wiener Filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acito, N., Diani, M., Corsini, G.: A new algorithm for robust estimation of the signal subspace in hyperspectral images in the presence of rare signal components. IEEE Trans. Geosci. Remote Sens. 47(11), 3844–3856 (2009)CrossRefGoogle Scholar
  2. 2.
    Basedow, R.W., Carmer, D.C., Anderson, M.E.: Hydice system: Implementation and performance. In: SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, pp. 258–267. International Society for Optics and Photonics (1995)Google Scholar
  3. 3.
    Bourennane, S., Fossati, C., Cailly, A.: Improvement of classification for hyperspectral images based on tensor modeling. IEEE Geosci. Remote Sens. Lett. 7(4), 801–805 (2010)CrossRefGoogle Scholar
  4. 4.
    Bourennane, S., Fossati, C., Cailly, A.: Improvement of target detection based on tensorial modelling (2010)Google Scholar
  5. 5.
    Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley, New Jersey (2009)CrossRefGoogle Scholar
  6. 6.
    Daubechies, I.: Ten lectures on wavelets. SIAM (2006)Google Scholar
  7. 7.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2,..., rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jin, X., Paswaters, S., Cline, H.: A comparative study of target detection algorithms for hyperspectral imagery. In: SPIE Defense, Security, and Sensing, p. 73341W–73341W. International Society for Optics and Photonics (2009)Google Scholar
  10. 10.
    Kerekes, J., Baum, J.: Hyperspectral imaging system modeling. Linc. Lab. J. 14(1), 117–130 (2003)Google Scholar
  11. 11.
    Kuybeda, O., Malah, D., Barzohar, M.: Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors. IEEE Trans. Signal Process. 55(12), 5579–5592 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Letexier, D., Bourennane, S.: Noise removal from hyperspectral images by multidimensional filtering. IEEE Trans. Geosci. Remote Sens. 46(7), 2061–2069 (2008)CrossRefGoogle Scholar
  13. 13.
    Letexier, D., Bourennane, S., Blanc-Talon, J.: Nonorthogonal tensor matricization for hyperspectral image filtering. IEEE Geosci. Remote Sens. Lett. 5(1), 3–7 (2008)CrossRefGoogle Scholar
  14. 14.
    Lin, T., Bourennane, S.: Hyperspectral image processing by jointly filtering wavelet component tensor. IEEE Trans. Geosci. Remote Sens. 51(6), 3529–3541 (2013)CrossRefGoogle Scholar
  15. 15.
    Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 14(1), 79–116 (2003)Google Scholar
  16. 16.
    Muti, D., Bourennane, S.: Multidimensional filtering based on a tensor approach. Signal Process. 85(12), 2338–2353 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Renard, N., Bourennane, S.: Improvement of target detection methods by multiway filtering. IEEE Trans. Geosci. Remote Sens. 46(8), 2407–2417 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tao Lin
    • 1
  • Julien Marot
    • 1
  • Salah Bourennane
    • 1
  1. 1.Institut Fresnel / CNRS-UMR 7249Ecole Centrale Marseille, Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations