Acquisition of Agronomic Images with Sufficient Quality by Automatic Exposure Time Control and Histogram Matching

  • Martín Montalvo
  • José M. Guerrero
  • Juan Romeo
  • María Guijarro
  • Jesús M. de la Cruz
  • Gonzalo Pajares
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


Agronomic images in Precision Agriculture are most times used for crop lines detection and weeds identification; both are a key issue because specific treatments or guidance require high accuracy. Agricultural images are captured in outdoor scenarios, always under uncontrolled illumination. CCD-based cameras, acquiring these images, need a specific control to acquire images of sufficient quality for greenness identification from which the crop lines and weeds are to be extracted. This paper proposes a procedure to achieve images with sufficient quality by controlling the exposure time based on image histogram analysis, completed with histogram matching. The performance of the proposed procedure is verified against testing images.


Uncontrolled illumination Automatic Exposure Time Histogram analysis Histogram matching Machine Vision Precision Agriculture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    López-Granados, F.: Weed detection for site-specific weed management: mapping and real-time approaches. Weed Research 51, 1–11 (2011)CrossRefGoogle Scholar
  2. 2.
    Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., Ribeiro, A.: Crop Row Detection in Maize Fields Inspired on the Human Visual Perception. The Scientific World Journal 2012, Article ID 484390, 10 pages (2012), doi:10.1100/2012/484390Google Scholar
  3. 3.
    Søgaard, H.T., Olsen, H.J.: Determination of crop rows by image analysis without segmentation. Computers and Electronics in Agriculture 38(2), 141–158 (2003)CrossRefGoogle Scholar
  4. 4.
    Hague, T., Tillett, N., Wheeler, H.: Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture 1(1), 95–113 (2006)Google Scholar
  5. 5.
    Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Computers and Electronics in Agriculture 61(1), 63–78 (2008)CrossRefGoogle Scholar
  6. 6.
    Montalvo, M., Pajares, G., Guerrero, J.M., Romeo, J., Guijarro, M., Ribeiro, A., Ruz, J.J., Cruz, J.M.: Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems Applic. 39, 11889–11897 (2012)CrossRefGoogle Scholar
  7. 7.
    Guerrero, J.M., Pajares, G., Montalvo, M., Romeo, J., Guijarro, M.: Support Vector Machines for crop/weeds identification in maize fields. Expert. Systems Applic. 39, 11149–11155 (2012)CrossRefGoogle Scholar
  8. 8.
    Montalvo, M., Guerrero, J.M., Romeo, J., Emmi, L., Guijarro, M., Pajares, G.: Automatic expert system for weeds/crops identification in images from maize fields. Expert. Systems Applic. 40, 75–82 (2013)CrossRefGoogle Scholar
  9. 9.
    Guerrero, J.M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., Pajares, G.: Automatic expert system based on images for accuracy crop row detection in maize fields. Expert. Systems Applic. 40, 656–664 (2013)CrossRefGoogle Scholar
  10. 10.
    Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., Cruz, J.M.: A new Expert System for greenness identification in agricultural images. Expert. Systems Applic. 40, 2275–2286 (2013)CrossRefGoogle Scholar
  11. 11.
    Fontaine, V., Crowe, T.G.: Development of line-detection algorithms for local positioning in densely seeded crops. Canadian Biosystems Engineering 48, 7.19–7.29 (2006)Google Scholar
  12. 12.
    Astrand, B., Baerveldt, A.J.: A vision based row-following system for agricultural field machinery. Mechatronics 15, 251–269 (2005)CrossRefGoogle Scholar
  13. 13.
    Leemans, V., Destain, M.F.: Application of the Hough transform for seed row location using machine vision. Biosystems Engineering 94(3), 325–336 (2006)CrossRefGoogle Scholar
  14. 14.
    Romeo, J., Guerrero, J.M., Montalvo, M., Emmi, L., Guijarro, M., Gonzalez-de-Santos, P., Pajares, G.: Camera Sensor Arrangement for Crop/Weed Detection Accuracy in Agronomic Images. Sensors 13, 4348–4366 (2013)CrossRefGoogle Scholar
  15. 15.
    Kremens, R., Sampat, N., Venkataraman, S., Yeh, T.: System implications of implementing auto-exposure on consumer digital cameras. In: SPIE Electronic Imaging 1999 Conference, vol. 3650 (January 1999)Google Scholar
  16. 16.
    Jiang, T., Kuhnert, K.D., Nguyen, D., Kuhnert, L.: Multiple templates auto exposure control based on luminance histogram for onboard camera. In: Proc. IEEE Int. Conf. on Computer Science and Automation Engineering (CSAE), Shanghai, China, June 10-12, vol. 3, pp. 237–241 (2011)Google Scholar
  17. 17.
    Vuong, Q.K., Yun, S.H., Kim, S.: A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology. In: Proc. of the World Congress on Engineering and Computer Science (WCECS) 2008, San Francisco, USA, October 22-24 (2008)Google Scholar
  18. 18.
    Nourani-Vatani, N., Roberts, J.: Automatic Camera Exposure Control. In: Proc. of the Australian Conf. Robotics and Automation, Brisbane, Australia, pp. 1–6 (December 2007)Google Scholar
  19. 19.
    SVS-VISTEK. The Focal Point of Machine Vision (2013), (accessed on May 1, 2013)
  20. 20.
    National Instruments, (accessed on May 1, 2013)
  21. 21.
    Kreuznach, S.: C-Mount Lenses compact series 1, (accessed on May 1, 2013)
  22. 22.
  23. 23.
    Holub, O., Ferreira, S.T.: Quantitative histogram analysis of images. Computer Physics Communications 175, 620–623 (2006)CrossRefGoogle Scholar
  24. 24.
    Rosin, P.L., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recognit. Lett. 24, 2345–2356 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martín Montalvo
    • 1
  • José M. Guerrero
    • 2
  • Juan Romeo
    • 2
  • María Guijarro
    • 2
  • Jesús M. de la Cruz
    • 1
  • Gonzalo Pajares
    • 2
  1. 1.Dpt. Computer Architecture and Automatic, Facultad de InformáticaUniversidad Complutense of MadridMadridSpain
  2. 2.Dpt. Software Engineering and Artificial Intelligence, Facultad de InformáticaUniversity Complutense of MadridMadridSpain

Personalised recommendations