Extended GrabCut for 3D and RGB-D Point Clouds

  • Nizar K. Sallem
  • Michel Devy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


GrabCut is a renowned algorithm for image segmentation. It exploits iteratively the combinatorial minimization of energy function as introduced in graph-cut methods, to achieve background foreground classification with fewer user’s interaction. In this paper it is proposed to extend GrabCut to carry out segmentation on RGB-D point clouds, based both on appearance and geometrical criteria. It is shown that an hybrid GrabCut method combining RGB and D information, is more efficient than GrabCut based only on RGB or D images.


segmentation graph-cut GrabCut RGB-D max-flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images 1, 105–112 (2001)Google Scholar
  2. 2.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 359–374 (2001)zbMATHGoogle Scholar
  3. 3.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  4. 4.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)Google Scholar
  5. 5.
    Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact Maximum A Posteriori Estimation for Binary Images (1989)Google Scholar
  6. 6.
    Holzer, S., Rusu, R.B., Dixon, M., Gedikli, S., Navab, N.: Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2684–2689. IEEE (2012)Google Scholar
  7. 7.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  8. 8.
    Orchard, M.T., Bouman, C.A.: Color quantization of images. IEEE Transactions on Signal Processing 39(12), 2677–2690 (1991)CrossRefGoogle Scholar
  9. 9.
    Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 309–314. ACM, New York (2004)Google Scholar
  10. 10.
    Ruzon, M., Tomasi, C.: Alpha Estimation in Natural Images. In: Proc. IEEE Conf. Comp. Vision and Pattern Recog., pp. 18–25 (2000)Google Scholar
  11. 11.
    Sallem, N., Devy, M.: Modélisation d’objets 3D en vue de leur reconnaissance et leur manipulation par un robot personnel. In: Proc. ORASIS 2009 - Congrès Des Jeunes Chercheurs En Vision Par Ordinateur, Trégastel, France (2009)Google Scholar
  12. 12.
    Talbot, J.F., Xu, X.: Implementing GrabCut (April 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nizar K. Sallem
    • 1
    • 2
  • Michel Devy
    • 1
    • 2
  1. 1.CNRS, LAASToulouseFrance
  2. 2.Université de Toulouse, LAASToulouseFrance

Personalised recommendations