Advertisement

Optimizing Contextual-Based Optimum-Forest Classification through Swarm Intelligence

  • Daniel Osaku
  • Rodrigo Nakamura
  • João Papa
  • Alexandre Levada
  • Fábio Cappabianco
  • Alexandre Falcão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

Several works have been conducted in order to improve classification problems. However, a considerable amount of them do not consider the contextual information in the learning process, which may help the classification step by providing additional information about the relation between a sample and its neighbourhood. Recently, a previous work have proposed a hybrid approach between Optimum-Path Forest classifier and Markov Random Fields (OPF-MRF) aiming to provide contextual information for this classifier. However, the contextual information was restricted to a spatial/temporal-dependent parameter, which has been empirically chosen in that work. We propose here an improvement of OPF-MRF by modelling the problem of finding such parameter as a swarm-based optimization task, which is carried out Particle Swarm Optimization and Harmony Search. The results have been conducted over the classification of Magnetic Ressonance Images of the brain, and the proposed approach seemed to find close results to the ones obtained by an exhaustive search for this parameter, but much faster for that.

Keywords

Magnetic Resonance Images Optimum-Path Forest Markov Random Fields Particle Swarm Optimization Harmony Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Proceedings of the International Symposium on Mathematical Morphology, pp. 253–264. MCT/INPE (2007)Google Scholar
  2. 2.
    Besag, E.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B36, 192–236 (1974)Google Scholar
  3. 3.
    Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological) 48(3), 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)Google Scholar
  5. 5.
    Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 51(2), 271–279 (1989)Google Scholar
  6. 6.
    Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications, 1st edn. Springer Publishing Company, Incorporated (2009)Google Scholar
  7. 7.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (November/December 1995)Google Scholar
  9. 9.
    Moore, C., Nordahl, M.G., Minar, N., Shalizi, C.R.: Vortex dynamics and entropic forces in antiferromagnets and antiferromagnetic potts models. Physical Review E 60, 5344–5351 (1999)CrossRefGoogle Scholar
  10. 10.
    Moser, G., Serpico, S.B.: Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Transactions on Geoscience and Remote Sensing PP(99), 1–19 (2012)Google Scholar
  11. 11.
    Nakamura, R., Osaku, D., Levada, A., Cappabianco, F., Falcão, A., Papa, J.: OPF-MRF: Optimum-path forest and markov random fields for contextual-based image classification. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 233–240. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recognition 45(1), 512–520 (2012)CrossRefGoogle Scholar
  13. 13.
    Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology 19(2), 120–131 (2009)CrossRefGoogle Scholar
  14. 14.
    Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters 7(4), 736–740 (2010)CrossRefGoogle Scholar
  16. 16.
    Wu, F.Y.: The potts model. Reviews of Modern Physics 54, 235–268 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu, T., Bae, M.H., Zhang, M., Pan, R., Badea, A.: A prior feature SVM-MRF based method for mouse brain segmentation. NeuroImage 59(3), 2298–2306 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Osaku
    • 1
  • Rodrigo Nakamura
    • 2
  • João Papa
    • 2
  • Alexandre Levada
    • 1
  • Fábio Cappabianco
    • 3
  • Alexandre Falcão
    • 4
  1. 1.Department of ComputingFederal University of São CarlosBrazil
  2. 2.Department of ComputingUNESP - Univ. Estadual PaulistaBrazil
  3. 3.Institute of Science and TechnologyFederal University of São PauloBrazil
  4. 4.Institute of ComputingUniversity of CampinasBrazil

Personalised recommendations