Real-Time Face Pose Estimation in Challenging Environments

  • Mliki Hazar
  • Hammami Mohamed
  • Ben-Abdallah Hanêne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


A novel low-computation discriminative feature representation is introduced for face pose estimation in video context. The contributions of this work lie in the proposition of new approach which supports automatic face pose estimation with no need to manual initialization, able to handle different challenging problems without affecting the computational complexity ( 58 milliseconds per frame). We have applied Local Binary Patterns Histogram Sequence (LBPHS) on Gaussian and Gabor feature pictures to encode salient micro-patterns of multi-view face pose. Relying on LBPHS face representation, an SVM classifier was used to estimate face pose. Two series of experiments were performed to prove that our proposed approach, being simple and highly automated, can accurately and effectively estimate face pose. Additionally, experiments on face images with diverse resolutions prove that LBPHS features are efficient to low-resolution images, which is critical challenge in real-world applications where only low-resolution frames are available.


Face pose estimation LBPH SVM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beymer, D.: Face Recognition Under Varying Pose. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 756–761 (1994)Google Scholar
  2. 2.
    Niyogi, S., Freeman, W.: Example-Based Head Tracking. In: Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 374–378 (1996)Google Scholar
  3. 3.
    Cascia, M.L., Sclaroff, S., Athitsos, V.: Fast, Reliable Head Tracking Under Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D Models. IEEE Trans. Pattern Analysis and Machine Intelligence 22(4), 322–336 (2000)CrossRefGoogle Scholar
  4. 4.
    Sherrah, J., Gong, S., Ong, E.-J.: Face Distributions in Similarity Space under Varying Head Pose. Image and Vision Computing 19(12), 807–819 (2001)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Trivedi, M.: A Two-Stage Head Pose Estimation Framework and Evaluation. Pattern Recognition 41(3), 1138–1158 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Voit, M., Nickel, K., Stiefelhagen, R.: Multi-view Head Pose Estimation using Neural Networks. Face Processing in Video (2005)Google Scholar
  7. 7.
    Huang, J., Shao, X., Wechsler, H.: Face Pose Discrimination Using Support Vector Machines (SVM). In: Proc. 14th Int’l Conf. Pattern Recognition, pp. 154–156 (1998)Google Scholar
  8. 8.
    Zhang, Z., Hu, Y., Liu, M., Huang, T.: Head Pose Estimation in Seminar Room Using Multi View Face Detectors. In: Multimodal Technologies for Perception of Humans: Proc. First Int’l Workshop Classification of Events, Activities and Relationships, pp. 299–304 (2007)Google Scholar
  9. 9.
    Cootes, T., Edwards, G., Taylor, C.: Active Appearance Models. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  10. 10.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active Shape Models—Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  11. 11.
    Wilson, H., Wilkinson, F., Lin, L., Castillo, M.: Perception of Head Orientation. Vision Research 40(5), 459–472 (2000)CrossRefGoogle Scholar
  12. 12.
    Gee, A., Cipolla, R.: Determining the Gaze of Faces in Images. Image and Vision Computing 12(10), 639–647 (1994)CrossRefGoogle Scholar
  13. 13.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J. Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhao, G., Chen, L., Song, J., Chen, G.: Large Head Movement Tracking Using SIFT-Based Registration. In: Proc. ACM Int’l Conf. Multimedia, pp. 807–810 (2007)Google Scholar
  15. 15.
    Gourier, N., Letessier, J.: The Pointing 04 Data Sets, Pointing 2004, ICPR, Visual Observation of Deictic Gestures (2004)Google Scholar
  16. 16.
    Kwong, J.N.S., Gong, S.: Learning Support Vector Machines for A Multi-View Face Model. In: Proc. of the British Machine Vision Conference (1999)Google Scholar
  17. 17.
    Gao, W., Chen, X.: The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. IEEE Transaction on Systems, man, and Cybernetics – Part A: Systems and Humans 38(1) (2008)Google Scholar
  18. 18.
    Little, G., Krishna, S., Black, J., Panchanathan, S.: A methodology for evaluating robustness of face recognition algorithms with respect to changes in pose and illumination angle. In: ICASSP (2005)Google Scholar
  19. 19.
    Ma, B., Zhang, W., Shan, S., Chen, X., Gao, W.: Robust Head Pose Estimation Using LGBP. In: The 18th International Conference on Pattern Recognition (2006)Google Scholar
  20. 20.
    Mliki, H., Hammami, M., Ben-Abdallah, H.: Real time face detection based on motion and skin color information. In: ISPA 2012, pp. 799–806 (2012)Google Scholar
  21. 21.
    Mliki, H., Hammami, M., Ben-Abdallah, H.: Multi-constraints Face Detect-Track System. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 224–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.: Head Pose Estimation on Low Resolution Images”, Multimodal Technologies for Perception of Humans. In: Proc. First Int’l Workshop Classification of Events, Activities and Relationships, pp. 270–280 (2007)Google Scholar
  23. 23.
    Tu, J., Fu, Y., Hu, Y., Huang, T.: Evaluation of Head Pose Estimation for Studio Data. In: Multimodal Technologies for Perception of Humans: Proc. First Int’l Workshop Classification of Events, pp. 281–290 (2007)Google Scholar
  24. 24.
    Minut, S., Mahadevan, S., Henderson, J.M., Dyer, F.C.: Face recognition using foveal vision. In: IEEE International Workshop on Biologically Motivated Computer Vision, pp. 424–433 (2000)Google Scholar
  25. 25.
    Liu, C., Wechsler, H.: Gabor Feature Based Classiffication Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing 11(4) (2002)Google Scholar
  26. 26.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  27. 27.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mliki Hazar
    • 1
  • Hammami Mohamed
    • 2
  • Ben-Abdallah Hanêne
    • 1
  1. 1.MIRACL-FSEGUniversity of SfaxSfaxTunisia
  2. 2.MIRACL-FSUniversity of SfaxSfaxTunisia

Personalised recommendations