Skip to main content

Methods

  • Chapter
  • First Online:
Climate of the Romanian Carpathians

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 461 Accesses

Abstract

This chapter is organized in four sections, which refer to the homogenization algorithm applied to the meteorological data, the statistical methods, the spatialisation methods used to derive the climatological maps and the regional climate models used to derive the future changes in the climate of the Romanian Carpathians. The homogenization was done using the Multiple Analysis of Series for Homogenization (MASH v3.03) method and software and the gridding was based on the Meteorological Interpolation based on the Surface Homogenized Data Basis (MISH v1.03) software, whose results were successfully applied within the CARPATCLIM project. The main statistical methods applied in the climatic analyzes are the Mann-Kendall trend test, the Kendal-Theil slope estimation and the Spearman rank correlation coefficient. Interpolation surfaces of climate variables have been constructed using the Regression Kriging method, which combines a multivariate regression model with kriging of the regression residuals. The climate change signals until 2050 were derived from the outputs of three Regional Climate Models (RegCM3, ALADIN-Climate, and PROMES) at 25 km spatial resolution, under A1B IPCC scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Castro M, Fernandez C, Gaertner MA (1993) Description of a mesoscale atmospheric numerical model. In: Dáz JI, Lions JL (eds) Mathematics, climate and environment, vol 27, Rech Math Appl Ser. Masson, Paris, pp 230–253

    Google Scholar 

  • Cheval S, Dumitrescu A, Petrișor A (2011) The July surface temperature lapse in the Romanian Carpathians. Carpath J Earth Environ Sci 6(1):189–198

    Google Scholar 

  • Costa AC, Soares A (2009) Homogenization of climate data: review and new perspectives using geostatistics. Math Geosci 41:291–305. doi:10.1007/s11004-008-9203-3

    Article  Google Scholar 

  • Dumitrescu A (2012) Spațializarea parametrilor meteorologici și climatici prin tehnici SIG (Spatialization of meteorological and climatic parameters using GIS techniques). PhD thesis. University of Bucharest (in Romanian)

    Google Scholar 

  • Gaertner MA, Dominguez M, Garvert M (2010) A modelling case-study of soil moisture–atmosphere coupling. Q J R Meteorol Soc 136(S1):483–495. doi:10.1002/qj.541

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam

    Google Scholar 

  • Hengl T, Heuvelink GB, Rossiter IDG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33(10):1301–1315. doi:10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  • IPCC TAR WG1 (2001) Climate change 2001: the scientific basis, Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, eds). Cambridge University Press, Cambridge

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Kottegoda N, Rosso R (1997) Statistics, probability and reliability for civil and environmental engineers. McGraw-Hill, New York

    Google Scholar 

  • Lakatos M, Szentimrey T, Bihari Z, Szalai S (2013) Creation of a homogenized climate database for the Carpathian region by applying the MASH procedure and the preliminary analysis of the data. Időjárás 117(1):143–158

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Patriche C (2003) Quantifying air temperature using regression and incoming net radiation. Analele stiintifice ale Universității “Al. I. Cuza” din Iași: Geografie, 60

    Google Scholar 

  • Patriche C (2007) About the influence of space scale on the spatialization of meteo-climatic variables. Geogr Tech 1:68–76

    Google Scholar 

  • Patriche C (2010) Aspects concerning the outliers problem in the context of digital climatic mapping, Analele Universității “Ștefan cel Mare” Suceava Sectiunea. Geografie 9:5–18

    Google Scholar 

  • Patriche C, Sfîca L, Rosca B (2008) About the problem of digital precipitations mapping using (Geo) Statistical methods in GIS. Geogr Tech 1:82–91

    Google Scholar 

  • Qin C-Z, Zhu A-X, Pei T, Li B-L, Scholten T, Behrens T, Zhou C-H (2011) An approach to computing topographic wetness index based on maximum downslope gradient. Presion Agric 12(1):32–43

    Article  Google Scholar 

  • Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Spiridonov V, Somot S, Déqué M (2005) ALADIN-climate: from the origins to present date. ALADIN Newsletter n. 29 (Nov. 2005)

    Google Scholar 

  • Szentimrey T (1999) Multiple Analysis of Series for Homogenization (MASH). Proceedings of the 2nd seminar for homogenization of surface climatological data. Budapest, Hungary. WMO, WCDMP-No. 41: 27–46

    Google Scholar 

  • Szentimrey T (2008) Development of MASH homogenization procedure for daily data. Proceedings of the fifth seminar for homogenization and quality control in climatological databases, Budapest, Hungary, 2006, WCDMP-No. 71: 123–130

    Google Scholar 

  • Szentimrey T (2011) Manual of homogenization software MASHv3.03, Hungarian Meteorological Service, p 64

    Google Scholar 

  • Szentimrey T, Bihari Z (2007) Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis), Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004, COST Action 719, COST Office: 17–27

    Google Scholar 

  • Venema VKC, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Muller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. doi:10.5194/cp-8-89-2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Micu, D.M., Dumitrescu, A., Cheval, S., Birsan, MV. (2015). Methods. In: Climate of the Romanian Carpathians. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02886-6_5

Download citation

Publish with us

Policies and ethics