Skip to main content

Fault Detection/Tolerance Strategies for AUVs and ROVs

  • Chapter
  • First Online:
Underwater Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 96))

Abstract

Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) received increasing attention in the last years due to their significant impact in several underwater operations. Examples are the monitoring and maintenance of off-shore structures or pipelines, or the exploration of the sea bottom; see, e.g., Reference [1] for a complete overview of existing AUVs with description of their possible applications and the main subsystems. The benefit in the use of unmanned vehicles is in terms of safety, due to the possibility to avoid the risk of manned missions, and economic. Generally, AUVs are required to operate over long periods of time in unstructured environments in which an undetected failure usually implies loss of the vehicle. It is clear that, even in case of failure detection, in order to terminate the mission, or simply to recover the vehicle, a fault tolerant strategy, in a wide sense, must be implemented. In fact, simple system failure can cause mission abort [2] while the adoption of a fault tolerant strategy allows to safely terminate the task as in the case of the arctic mission of Theseus [3]. In case of the use of ROVs, a skilled human operator is in charge of command the vehicle; a failure detection strategy is then of help in the human decision making process. Based on the information detected, the operator can decide in the vehicle rescue or to terminate the mission by, e.g., turning off a thruster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yuh, M. West, Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)

    Article  Google Scholar 

  2. B. Hutchison, Velocity aided inertial navigation, in Proceedings of Sensor Navigation Issues for UUVs, CS Draper Lab. (1991)

    Google Scholar 

  3. J. Ferguson, A. Pope, B. Butler, R. Verrall, Theseus AUV-two record breaking missions. Sea Technol. 40(2), 65–70 (1999)

    Google Scholar 

  4. H.E. Rauch, Intelligent fault diagnosis and control reconfiguration. IEEE Control Syst. 14(3), 6–12 (1994)

    Article  Google Scholar 

  5. M. Caccia, R. Bono, Ga. Bruzzonea, Gi Bruzzone, E. Spirandelli, G. Veruggio, Experiences on actuator fault detection, diagnosis and accomodation for ROVs, in International Symposiyum of Unmanned Untethered Sub-mersible Technol. (Durham, New Hampshire, 2001)

    Google Scholar 

  6. M.P. Brito, G. Griffiths, A Markov chain state transition approach to establishing critical phases for AUV reliability. IEEE J. Oceanic Eng. 36(1), 139–149 (2011)

    Article  Google Scholar 

  7. A. Alessandri, A. Gibbons, A.J. Healey, G. Veruggio, Robust model-based fault diagnosis for unmanned underwater vehicles using sliding mode-observers, in Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, New Hampshire, 1999), pp. 352–359

    Google Scholar 

  8. R. Bono, Ga. Bruzzone, M. Caccia, ROV actuator fault diagnosis through servo-amplifiers’ monitoring: an operational experience, in Proceedings of OCEANS’99 MTS/IEEE. Riding the Crest into the 21st Century, vol. 3, pp. 1318–1324. (1999).

    Google Scholar 

  9. A. Alessandri, M. Caccia, G. Veruggio, A model-based approach to fault diagnosis in unmanned underwater vehicles, in OCEANS’98 Conference Proceedings/IEEE, vol. 2, pp. 825–829. (1998)

    Google Scholar 

  10. Y.K. Alekseev, V.V. Kostenko, A.Y. Shumsky, Use of identification and fault diagnostic methods for underwater robotics, in OCEANS’94’. Oceans Engineering for Today’s Technology and Tomorrow’s Preservation/IEEE, pp. 489–494. (1994)

    Google Scholar 

  11. A. Alessandri, M. Caccia, G. Veruggio, Fault detection of actuator faults in unmanned underwater vehicles. Control Eng. Pract. 7(3), 357–368 (1999)

    Article  Google Scholar 

  12. K. Hamilton, D. Lane, N. Taylor, K. Brown, Fault diagnosis on autonomous robotic vehicles with RECOVERY: an integrated heterogeneous-knowledge approach, in IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, San Francisco, California, 2001, pp. 3232–3237

    Google Scholar 

  13. A.J. Healey, Analytical redundancy and fuzzy inference in AUV fault detection and compensation, in Proceedings Oceanology 1998, Brighton, 1998, pp. 45–50

    Google Scholar 

  14. K.C. Yang, J. Yuh, S.K. Choi, Experimental study of fault-tolerant system design for underwater robots, in IEEE International Conference on Robotics and Automation, 1998. Proceedings 1998, vol. 2, pp. 1051–1056. (1998)

    Google Scholar 

  15. K.C. Yang, J. Yuh, S.K. Choi, Fault-tolerant system design of an autonomous underwater vehicle ODIN: an experimental study. Int. J. Syst. Sci. 30(9), 1011–1019 (1999)

    Article  MATH  Google Scholar 

  16. G. Beale, J. Kim, A robust approach to reconfigurable control, 5th IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, Denmark, 2000), pp. 197–202

    Google Scholar 

  17. J. Kim, G. Beale, Fault detection and classification in underwater vehicle using the \(t^2\) statistic, in 9th Mediterranean Conference on Control and Automation, (Dubrovnik, Croatia, 2001)

    Google Scholar 

  18. J. Ferguson, The Theseus autonomous underwater vehicle. Two successful missions, in Underwater Technology, 1998. Proceedings of the 1998 International Symposium/IEEE, Tokyo, Japan, 1998, pp. 109–114

    Google Scholar 

  19. A.J. Healey, D.B. Marco, Experimental verification of mission planning by autonomous mission execution and data visualization using the NPS AUV II, in Autonomous Underwater Vehicle Technology, 1992. AUV’92., Proceedings of the 1992 Symposium/IEEE, Washington D.C., 1992, pp. 65–72

    Google Scholar 

  20. X. Zheng, Layered control of a practical AUV. in Autonomous Underwater Vehicle Technology, 1992. AUV’92., Proceedings of the 1992 Symposium/IEEE, Washington D.C., 1992, pp. 142–147

    Google Scholar 

  21. D. Barnett, S. McClaran, E. Nelson, M. McDermott, G. Williams, Architecture of the Texas A &M autonomous underwater vehicle controller, in Autonomous Underwater Vehicle Technology, 1996. AUV’96., Proceedings of the 1996 Symposium/IEEE, Monterey, California, 1996, pp. 231–237

    Google Scholar 

  22. W.J. Kirkwood, D. Gashler, H. Thomas, T.C. O’Reilly, R. McEwen, N. Tervalon, F. Shane, D. Au, M. Sibenac, T. Konvalina, et al., Development of a long endurance autonomous underwater vehicle for ocean science exploration, in OCEANS, 2001. MTS/IEEE Conference and Exhibition, Honolulu, Hawaii, 2001, pp. 1504–1512

    Google Scholar 

  23. E. Nelson, S. McClaran, D. Barnett, Development and validation of the Texas A &M university autonomous underwater vehicle controller, in Autonomous Underwater Vehicle Technology, 1996. AUV’96., Proceedings of the 1996 Symposium/IEEE, Monterey, California, 1996, pp. 203–208

    Google Scholar 

  24. A. Orrick, M. McDermott, D. Barnett, E. Nelson, G. Williams, Failure detection in an autonomous underwater vehicle, in Autonomous Underwater Vehicle Technology, 1994. AUV’94., Proceedings of the 1996 Symposium/IEEE, Cambridge, Massachusetts, 1994, pp. 377–382

    Google Scholar 

  25. R.P. Stokey, Software design techniques for the man machine interface to a complex underwater vehicle, in OCEANS’94’. Oceans Engineering for Today’s Technology and Tomorrow’s Preservation’. Proceedings of IEEE, Brest, France, 1994, pp. 119–124

    Google Scholar 

  26. A. Yavnai, Architecture for an autonomous reconfigureable intelligent control system (ARICS), in Autonomous Underwater Vehicle Technology, 1996. AUV’96., Proceedings of the 1996 Symposium/IEEE, Monterey, California, 1996, pp. 238–245

    Google Scholar 

  27. B. Deuker, M. Perrier, B. Amy, Fault-diagnosis of subsea robots using neuro-symbolic hybrid systems, in OCEANS’98 Conference Proceedings/IEEE, Nice, France, 1998, pp. 830–834

    Google Scholar 

  28. J. Farrell, T. Berger, B.D. Appleby, Using learning techniques to accommodate unanticipated faults. IEEE Control Syst 13(3), 40–49 (1993)

    Article  Google Scholar 

  29. A.J. Healey, A neural network approach to failure diagnostics for underwater vehicles, in Autonomous Underwater Vehicle Technology, 1992. AUV’92., Proceedings of the 1992 Symposium on IEEE, Washington D.C., 1992, pp. 131–134

    Google Scholar 

  30. A.J. Healey, F. Bahrke, J. Navarrete, Failure diagnostics for underwater vehicles: A neural network approach, IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, DenmarK, 1992), pp. 293–306

    Google Scholar 

  31. M. Takai, T. Fujii, T. Ura, A model based diagnosis system for autonomous underwater vehicles using artifical neural networks, Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, New Hampshire, 1995), pp. 243–252

    Google Scholar 

  32. N. Ranganathan, M.I. Patel, R. Sathyamurthy, An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. A: Syst. Humans 31(6), 762–767 (2001)

    Article  Google Scholar 

  33. T.K. Podder, G. Antonelli, N. Sarkar, Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments, Proceedings 2000 IEEE International Conference on Robotics and Automation (CA, April, San Francisco, 2000), pp. 1251–1256

    Google Scholar 

  34. T.K. Podder, G. Antonelli, N. Sarkar, An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle. J. Adv. Robot. 15(5), 501–520 (2001)

    Article  Google Scholar 

  35. T.K. Podder, N. Sarkar, Fault tolerant decomposition of thruster forces of an autonomous underwater vehicle, in Proceedings 1998 IEEE International Conference on Robotics and Automation, Leuven, B, May 1998, pp. 84–89

    Google Scholar 

  36. T.K. Podder, N. Sarkar, Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robot. Auton. Syst. 34(1), 39–52 (2001)

    Article  Google Scholar 

  37. N. Sarkar, T.K. Podder, G. Antonelli, Fault accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans. Robot. Autom. 18(2), 223–233 (April 2002)

    Google Scholar 

  38. M.L. Corradini, A. Monteriù, G. Orlando, An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Trans. Control Syst. Technol. 19(5), 1036–1046 (2011)

    Article  Google Scholar 

  39. D. Perrault, M. Nahon, Fault-tolerant control of an autonomous underwater vehicle, in OCEANS’98 Conference Proceedings of IEEE, Nice, France, 1998, pp. 820–824

    Google Scholar 

  40. K. Hamiltonand, D.M. Lane, K.E. Brown, J. Evans, N.K. Taylor, An integrated diagnostic architecture for autonomous underwater vehicles: research articles. J. Field Robot. 24(6), 497–526 (2007)

    Google Scholar 

  41. E. Miguelaez, P. Patron, K.E. Brown, Y.R. Petillot, D.M. Lane, Semantic knowledge-based framework to improve the situation awareness of autonomous underwater vehicles. IEEE Trans. Knowl. Data Eng. 23(5), 759–773 (2011)

    Article  Google Scholar 

  42. R. Dearden, J. Ernits, Automated fault diagnosis for an autonomous underwater vehicle. IEEE J. Oceanic Eng. 58, 11–21 (2013)

    Google Scholar 

  43. T. Fossen, Guidance and Control of Ocean Vehicles. (McGraw Hill, New York, 1994)

    Google Scholar 

  44. R.A. Brooks, A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  45. J.G. Bellingham, C.A. Goudey, T.R. Consi, J.W. Bales, D.K. Atwood, J.J. Leonard, C. Chryssostomidis, A second generation survey AUV, in Autonomous Underwater Vehicle Technology, 1994. AUV’94., Proceedings of the 1994 Symposium on IEEE, Cambridge, Massachusetts, 1994, pp. 148–155

    Google Scholar 

  46. R.S. Mangoubi, B.D. Appleby, G.C. Verghese, W.E. Vander Velde, A robust failure detection and isolation algorithm, in Decision and Control, 1995, Proceedings of the 34th IEEE Conference on IEEE, New Orleans, Louisiana, 1995, pp. 2377–2382

    Google Scholar 

  47. W. Hornfeld, E. Frenzel, Intelligent AUV on-board health monitoring software (INDOS), in OCEANS’98 Conference Proceedings/IEEE, vol. 2, Nice, France, 1998, pp. 815–819

    Google Scholar 

  48. P.S. Babcock IV, J.J. Zinchuk, Fault-tolerant design optimization: application to an autonomous underwater vehicle navigation system, in Autonomous Underwater Vehicle Technology, 1990. AUV’90., Proceedings of the (1990) Symposium on IEEE, Washington DC, 1990, pp. 34–43

    Google Scholar 

  49. X. Dermin, G. Lei, Wavelet transform and its application to autonomous underwater vehicle control system fault detection, in Underwater Technology, 2000. UT 00. Proceedings of the 2000 International Symposium on IEEE, Tokyo, Japan, 2000, pp. 99–104

    Google Scholar 

  50. A.C. Schultz, J.J. Grefenstette, K.A. De Jong, Adaptive testing of controllers for autonomous vehicles, in Autonomous Underwater Vehicle Technology, 1992. AUV’92., Proceedings of the 1992 Symposium on IEEE, Washington, DC, 1992, pp. 158–164

    Google Scholar 

  51. A. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown, Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Oceanic Eng. 20(4), 354–361 (1995)

    Article  Google Scholar 

  52. G. Tacconi, A. Tiano, Reconfigurable control of an autonomous underwater vehicle, in Unmanned Untethered Submersible Technology, 1989. Proceedings of the 6th International Symposium on IEEE, 1989, pp. 486–493

    Google Scholar 

  53. G. Tong, Z. Jimao, A rapid reconfiguration strategy for UUV control, in Underwater Technology, 1998. Proceedings of the 1998 International Symposium on IEEE, Tokyo, Japan, 1998, pp. 478–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antonelli, G. (2014). Fault Detection/Tolerance Strategies for AUVs and ROVs. In: Underwater Robots. Springer Tracts in Advanced Robotics, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-02877-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02877-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02876-7

  • Online ISBN: 978-3-319-02877-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics