Skip to main content

Low-Current Focused Ion Beam Milling for Freestanding Nanomaterial Characterization

  • Chapter
  • First Online:
FIB Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

  • 1875 Accesses

Abstract

Techniques for the fabrication of one-dimensional or quasi-one-dimensional nanowires as well as to enable studies of the compositional, structural, and electrical properties of freestanding individual nanoobjects are of great importance, for instance, to observe quantum size effects and build quantum information devices. In this chapter, a technique of low-current focused ion beam (FIB) milling for two kinds of applications, namely, the selective felling of freestanding nanoobjects in a well-controllable way and the size reduction of both lateral and freestanding tungsten composite nanostructures, is presented. To fell a freestanding nanoobject, parameters such as the angle of the incident ion beam with respect to the nanoobject long axis, the cutting point, and the ion beam current were carefully chosen for controllable felling. To thin a nanoobject, different exposure times and ion beam currents were used to control the final size, thinning rate, and accuracy of a group of nanowires, or an individual nanowire, or even a portion of a nanowire by site-specific milling. After felling or thinning with low-current ion beam, no obvious structural and electrical property changes were observed for nanoobject grown with FIB-induced deposition. These results suggest that FIB milling is applicable in felling freestanding nanoobjects for the investigation of the properties of selected individuals, and it is also a potential approach for controllable size reduction enabling the observation of size and quantum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katsaros, G., Spathis, P., Stoffel, M., Fournel, F., Mongillo, M., Bouchiat, V., Lefloch, F., Rastelli, A., Schmidt, O.G., De Franceschi, S.: Nat. Nanotechnol. 5, 458–464 (2010). doi:10.1038/nnano.2010.84

    Article  Google Scholar 

  2. Kim, J.R., Kim, B.K., OLee, J., Kim, J., Seo, H.J., Lee, J., Kim, J.J.: Nanotechnology 15, 1397 (2004)

    Article  Google Scholar 

  3. Qu, Y.Q., Liao, L., Li, Y.J., Zhang, H., Huang, Y., Duan, X.F.: Nano Lett. 9, 4539 (2009)

    Article  Google Scholar 

  4. Bruhn, B., Valenta, J., Linnros, J.: Nanotechnology 20, 505301 (2009)

    Article  Google Scholar 

  5. Lai, C.X., Wu, Q.B., Chen, J., Wen, L.S., Ren, S.: Nanotechnology 21, 215602 (2010)

    Article  Google Scholar 

  6. Qu, Y.Q., Liao, L., Cheng, R., Wang, Y., Lin, Y.C., Huang, Y., Duan, X.F.: Nano Lett. 10, 1941 (2010). doi:10.1021/nl101010m

    Article  Google Scholar 

  7. Newton, M.C., Firth, S., Warburton, P.A.: Appl. Phys. Lett. 89, 072194 (2006)

    Article  Google Scholar 

  8. Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Nature 455, 376 (2008)

    Article  Google Scholar 

  9. Gouma, P., Kalyanasundaram, K., Yun, X., Stanacevic, M., Wang, L.: IEEE Sensor. J. 10, 49 (2010)

    Article  Google Scholar 

  10. Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., Lieber, C.M.: Science 329, 830 (2010)

    Article  Google Scholar 

  11. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Science 289, 604 (2000)

    Article  Google Scholar 

  12. Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., Li, W.: Appl. Phys. Lett. 97, 222506 (2010)

    Article  Google Scholar 

  13. He, Y., Wang, J.A., Chen, X.B., Zhang, W.F., Zeng, X.Y., Gu, Q.W.: J. Nanopart. Res. 12, 169 (2010)

    Article  Google Scholar 

  14. Long, R.H., Chen, J.J., Lim, J.H., Bwiley, J., Zhou, W.L.: Nanotechnology 20, 285306 (2009)

    Article  Google Scholar 

  15. Magasinski, A., Dixon, P., Hertzberg, B., Kvi, A., Ayala, J., Yushin, G.: Nat. Mater. 9, 353 (2010)

    Article  Google Scholar 

  16. Assefa, S., Xia, F.N., Vlasov, Y.A.: Nature 464, 80 (2010)

    Article  Google Scholar 

  17. Xu, S., Qin, Y., Xu, C., Wei, Y.G., Yang, R.M., Wang, Z.L.: Nat. Nanotechnol. 5, 366 (2010). doi:10.1038/nnano.2010.46

    Article  Google Scholar 

  18. Bezryadin, A.: J. Phys. Condens. Matter 20, 043202 (2008)

    Article  Google Scholar 

  19. Li, W., Fenton, J.C., Cui, A., Wang, H., Wang, Y.Q., Gu, C.Z., McComb, D.W., Warburton, P.A.: Nanotechnology 23, 105301 (2012)

    Google Scholar 

  20. Lu, S.L., Song, Z.T., Liu, Y., Liu, Y., Chia, S.L.: Phys. Lett. 27, 028401 (2010)

    Google Scholar 

  21. Ross, I.M., Luxmoor, I.J., Gullis, A.G., Orr, J., Buckle, P.D., Jefferson, J.H.: J. Phys. Conf. 26, 363 (2006)

    Article  Google Scholar 

  22. Prestigiacomo, M., Bedu, F., Jandard, F., Tonneau, D., Dallaporta, H., Roussel, L., Sudraud, P.: Appl. Phys. Lett. 86, 192112 (2005)

    Article  Google Scholar 

  23. Nakamatsu, K., Igaki, J., Nagase, M., Ichihashi, T., Matsui, S.: Microelectron. Eng. 83, 808 (2006)

    Article  Google Scholar 

  24. Tian, M., Wang, J., Kurtz, J.S., Liu, Y., Chan, M.H.W., Mayer, T.S., Mallouk, T.E.: Phys. Rew. B 71, 104521 (2005)

    Article  Google Scholar 

  25. Lau, N., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M.: Phys. Rev. Lett. 87, 217003 (2001)

    Article  Google Scholar 

  26. Romano, L., Rudawski, N.G., Holzworth, M.R., Jones, K.S., Choi, S.G., Picraux, S.T.: J. Appl. Phys. 106, 114316 (2009)

    Google Scholar 

  27. Park, B. C., Jung, K.Y., Song, W. Y., Beom-Hoan, O., Ahn, S. J.: Adv. Mater. 18, 95 (2006)

    Google Scholar 

  28. Xia, L., Wu, W., Xu, J., Hao Y., Wang, Y.: MEMS 22, 118 (2006)

    Google Scholar 

  29. Borschel, C., Niepelt, R., Geburt, S., Gutsche, C., Regolin, I., Prost, W., Tegude, F.-J., Stichtenoth, D., Schwen, D., Ronning, C.: Small 5, 2576–2580 (2009)

    Article  Google Scholar 

  30. Borschel, C., Spindler, S., Lerose, D., Bochmann, A., Christiansen, S.H., Nietzsche, S., Oertel, M., Ronning, C.: Nanotechnology 22, 185307 (2011)

    Article  Google Scholar 

  31. Martin, C.R.: Science 266, 1961 (1994)

    Article  Google Scholar 

  32. Butko, V.Y., Ditusa, J.F., Adams, P.W.: Phys. Rev. Lett. 84, 1543 (2000)

    Article  Google Scholar 

  33. Abadal, G., Perez-Murano, F., Barniol, N., Aymerich, X.: Appl. Phys. A 66, S791 (1998)

    Article  Google Scholar 

  34. Bezryadin, A., Lau, C.N., Tinkham, M.: Nature 404, 971 (2000)

    Article  Google Scholar 

  35. Zgirski, M., Arutyunov, K.Y.: Phys. Rev. B 75, 172509 (2007)

    Article  Google Scholar 

  36. Cheng, H.H., Alkaisi, M.M., Wu, S.E., Liu, C.P.: AIP Conf. Proc. 1151, 48 (2009)

    Article  Google Scholar 

  37. Troeman, A.P.G., Derking, H., Borger, B., Pleikies, J., Veldhius, D., Hilgenkamp, H.: Nano Lett. 7, 2152 (2007)

    Article  Google Scholar 

  38. Tettamanzi, G.C., Pakes, C.I., Lam, S.K.H., Prawer, S.: Supercond. Sci. Tech. 22, 064006 (2009)

    Article  Google Scholar 

  39. Krzton-Maziopa, A., Shermadini, Z., Pomjakushina, E., Pomjakushin, V., Bendele, M., Amato, A., Khasanov, R., Luetkens, H., Conder, K.: J. Phys. Condens. Matter 23, 052203 (2011)

    Article  Google Scholar 

  40. Li, W., Fenton, J.C., Gu, C.Z., Warburton, P.A.: Microelectron. Eng. 88, 2636 (2011)

    Article  Google Scholar 

  41. Li, W., Cui, A., Gu, C.Z., Warburton, P.A.: Microelectron. Eng. 98, 301 (2012)

    Google Scholar 

  42. Rogachev, A., Bezryadin, A.: Appl. Phys. Lett. 83, 512 (2003)

    Article  Google Scholar 

  43. Li, W., Gu, C.Z., Warburton, P.A.: J. Nanosci. Nanotechnol. 10, 7436 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuxia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, W., Cui, A., Gu, C. (2013). Low-Current Focused Ion Beam Milling for Freestanding Nanomaterial Characterization. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_3

Download citation

Publish with us

Policies and ethics