Skip to main content

Epitaxial Ferroelectric Nanostructures Fabricated by FIB Milling

  • Chapter
  • First Online:
FIB Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

In this chapter we explore the possibilities offered by focused ion beam milling to fabricate epitaxial islands out of bismuth ferrite thin films. Three processes are described: first one consisting of high-energy direct milling of a film followed by annealing procedures, a second one of high-energy milling of a film coated with a sacrificial layer which is removed successively, and a third one of low-energy milling of a film previously structured with sacrificial layer islands. Ferroelectric properties of the obtained structures have been investigated at a nanoscale level by piezoresponse force microscopy, in order to evaluate the impact of fabrication-induced damages on the functional properties. Structures produced by direct milling display ferroelectricity only after a post-fabrication annealing procedure, exhibiting polarization pinning only for structures with lateral sizes <500 nm. Detailed investigations have revealed occurrence of pinning and/or high imprint in an area within 100 nm distance from the structure edges, independently of the structure size. On the contrary, 250 nm large islands produced by milling through a sacrificial layer and over the structured sacrificial layer display ferroelectricity, without diminution of functional properties. Hence we conclude that focused ion beam milling is a viable technique for fabrication of ferroelectric structures, in particular bismuth ferrite nanoislands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valasek, J.: Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921)

    Article  Google Scholar 

  2. Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford (1977)

    Google Scholar 

  3. Scott, J.F., Paz de Araujo, C.A.: Ferroelectric memories. Science 246, 1400–1405 (1989)

    Article  Google Scholar 

  4. Maruyama, K., Kondo, M., Singh, S.K., Ishiwara, H.: New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J. 43, 502–507 (2007)

    Google Scholar 

  5. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  6. Kubel, F., Schmid, H.: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. Sect. B 46, 698–702 (1990)

    Article  Google Scholar 

  7. Sosnowska, I., Peterlin-Neumaier, T., Steichele, E.: Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)

    Article  Google Scholar 

  8. Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006)

    Article  Google Scholar 

  9. Lebeugle, D., Colson, D., Forget, A., Viret, M., Bataille, A.M., Gukasov, A.: Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)

    Article  Google Scholar 

  10. Lee, S., Ratcliff, W., Cheong, S.W., Kiryukhin, V.: Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92, 192906 (2008)

    Article  Google Scholar 

  11. Chu, Y.H., Zhao, T., Cruz, M.P., Zhan, Q., Yang, P.L., Martin, L.W., Huijben, M., Yang, C.H., Zavaliche, F., Zheng, H., Ramesh, R.: Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl. Phys. Lett. 90, 252906 (2007)

    Article  Google Scholar 

  12. Rodriguez, B.J., Gruverman, A., Kingon, A.I., Nemanich, R.J., Cross, J.S.: Investigation of the mechanism of polarization switching in ferroelectric capacitors by three-dimensional piezoresponse force microscopy. Appl. Phys. A 80, 99–103 (2005)

    Article  Google Scholar 

  13. Li, W., Alexe, M.: Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: role of the 90 degrees domain walls. Appl. Phys. Lett. 91, 262903 (2007)

    Article  Google Scholar 

  14. Scott, J.F., Gruverman, A., Wu, D., Vrejoiu, I., Alexe, M.: Nanodomain faceting in ferroelectrics. J. Phys. Condens. Matter 20, 425222 (2008)

    Article  Google Scholar 

  15. Kim, Y.S., Kumar, A., Ovchinnikov, O., Jesse, S., Han, H., Pantel, D., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M.: First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. ACS Nano 6, 491–500 (2011)

    Article  Google Scholar 

  16. Kim, Y.S., Han, H., Lee, W., Baik, S., Hesse, D., Alexe, M.: Non-Kolmogorov-Avrami-Ishibashi switching dynamics of nanoscale ferroelectric capacitors. Nano Lett. 10, 1266–1270 (2010)

    Article  Google Scholar 

  17. Kim, Y.S., Han, H., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M.: Cross talk by extensive domain wall motion in arrays of ferroelectric nanocapacitors. Appl. Phys. Lett. 99, 202901 (2011)

    Article  Google Scholar 

  18. Ganpule, C.S., Stanishevsky, A., Su, Q., Aggarwal, S., Melngailis, J., Williams, E., Ramesh, R.: Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75, 409–411 (1999)

    Article  Google Scholar 

  19. Stanishevsky, A., Aggarwal, S., Prakash, A.S., Melngailis, J., Ramesh, R.: Focused ion-beam patterning of nanoscale ferroelectric capacitors. J. Vac. Sci. Technol. B 16, 3899–3902 (1998)

    Article  Google Scholar 

  20. Stanishevsky, A., Nagaraj, B., Melngailis, J., Ramesh, R., Khriachtchev, L., McDaniel, E.: Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors. J. Appl. Phys. 92, 3275–3278 (2002)

    Article  Google Scholar 

  21. Catalan, G., Schilling, A., Scott, J.F., Gregg, J.M.: Domains in three-dimensional ferroelectric nanostructures: theory and experiment. J. Phys. Condens. Matter 19, 132201 (2007)

    Article  Google Scholar 

  22. Saad, M.M., Bowman, R.M., Gregg, J.M.: Characteristics of single crystal “thin film” capacitor structures made using a focused ion beam microscope. Appl. Phys. Lett. 84, 1159–1161 (2004)

    Article  Google Scholar 

  23. Schilling, A., Adams, T.B., Bowman, R.M., Gregg, J.M., Catalan, G., Scott, J.F.: Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006)

    Article  Google Scholar 

  24. Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., Gregg, J.M.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359–3364 (2009)

    Article  Google Scholar 

  25. McGilly, L.J., Gregg, J.M.: Scaling of superdomain bands in ferroelectric dots. Appl. Phys. Lett. 98, 132902 (2011)

    Article  Google Scholar 

  26. McQuaid, R.G.P., McMillen, M., Chang, L.W., Gruverman, A., Gregg, J.M.: Domain wall propagation in meso- and nanoscale ferroelectrics. J. Phys. Condens. Matter 24, 024204 (2012)

    Article  Google Scholar 

  27. Hambe, M., Wicks, S., Gregg, J.M., Nagarajan, V.: Creation of damage-free ferroelectric nanostructures via focused ion beam milling. Nanotechnology 19, 175302 (2008)

    Article  Google Scholar 

  28. Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, A., Zhao, T., Chen, L., Melngailis, J., Auciello, O., Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2003)

    Article  Google Scholar 

  29. Nagarajan, V., Stanishevsky, A., Chen, L., Zhao, T., Liu, B.T., Melngailis, J., Roytburd, A.L., Ramesh, R.: Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81, 4215–4217 (2002)

    Article  Google Scholar 

  30. Schilling, A., Adams, T.B., Bowman, R.M., Gregg, J.M.: Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures. Nanotechnology 18, 035301 (2007)

    Article  Google Scholar 

  31. Rémiens, D., Liang, R.H., Soyer, C., Deresmes, D., Troadec, D., Quignon, S., Da Costa, A., Desfeux, R.: Analysis of the degradation induced by focused ion Ga3+ beam for the realization of piezoelectric nanostructures. J. Appl. Phys. 108, 042008 (2010)

    Article  Google Scholar 

  32. Hong, S., Klug, J.A., Park, M., Imre, A., Bedzyk, M.J., No, K., Petford-Long, A., Auciello, O.: Nanoscale piezoresponse studies of ferroelectric domains in epitaxial BiFeO3 nanostructures. J. Appl. Phys. 105, 061619 (2009)

    Article  Google Scholar 

  33. Güthner, P., Dransfeld, K.: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992)

    Article  Google Scholar 

  34. Franke, K., Besold, J., Haessler, W., Seegebarth, C.: Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf. Sci. Lett. 302, 283–288 (1994)

    Article  Google Scholar 

  35. Gruverman, A., Auciello, O., Tokumoto, H.: Scanning force microscopy for the study of domain structure in ferroelectric thin films. J. Vac. Sci. Technol. B 14, 602–605 (1996)

    Article  Google Scholar 

  36. Gruverman, A., Auciello, O., Tokumoto, H.: Nanoscale investigation of fatigue effects in Pb(Zr, Ti)O3 films. Appl. Phys. Lett. 69, 3191–3193 (1996)

    Article  Google Scholar 

  37. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., Amano, J.: Formation and observation of 50 nm polarized domains in PbZr1−x Ti x O3 thin film using scanning probe microscope. Appl. Phys. Lett. 68, 2358–2359 (1996)

    Article  Google Scholar 

  38. Eng, L.M., Güntherodt, H.J., Rosenman, G., Skliar, A., Oron, M., Katz, M., Eger, D.: Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals. J. Appl. Phys. 83, 5973–5977 (1998)

    Article  Google Scholar 

  39. Eng, L.M., Güntherodt, H.J., Schneider, G.A., Kopke, U., Saldana, J.M.: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics. Appl. Phys. Lett. 74, 233–235 (1999)

    Article  Google Scholar 

  40. Abplanalp, M., Eng, L., Günter, P.: Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A 66, 231–234 (1998)

    Article  Google Scholar 

  41. Roelofs, A., Böttger, U., Waser, R., Schlaphof, F., Trogisch, S., Eng, L.M.: Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl. Phys. Lett. 77, 3444–3446 (2000)

    Article  Google Scholar 

  42. Gruverman, A., Tokumoto, H., Prakash, A.S., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., Venkatesan, T.: Nanoscale imaging of domain dynamics and retention in ferroelectric thin films. Appl. Phys. Lett. 71, 3492–3494 (1997)

    Article  Google Scholar 

  43. Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M.: Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  Google Scholar 

  44. Alexe, M., Gruverman, A., Harnagea, C., Zakharov, N.D., Pignolet, A., Hesse, D., Scott, J.F.: Switching properties of self-assembled ferroelectric memory cells. Appl. Phys. Lett. 75, 1158–1160 (1999)

    Article  Google Scholar 

  45. Alexe, M., Harnagea, C., Hesse, D., Gösele, U.: Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl. Phys. Lett. 79, 242–244 (2001)

    Article  Google Scholar 

  46. Harnagea, C., Pignolet, A., Alexe, M., Hesse, D., Goesele, U.: Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films. Appl. Phys. A 70, 261–267 (2000)

    Article  Google Scholar 

  47. Jesse, S., Baddorf, A.P., Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006)

    Article  Google Scholar 

  48. Jesse, S., Lee, H.N., Kalinin, S.V.: Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006)

    Article  Google Scholar 

  49. Morelli, A., Johann, F., Schammelt, N., Vrejoiu, I.: Ferroelectric nanostructures fabricated by focused-ion-beam milling in epitaxial BiFeO3 thin films. Nanotechnology 22, 265303 (2011)

    Article  Google Scholar 

  50. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM—The stopping and range of ions in matter (2010). Nucl. Instr. Meth. Phys. Res. B 268, 1818–1823 (2010)

    Google Scholar 

  51. Morelli, A., Johann, F., Schammelt, N., McGrouther, D., Vrejoiu, I.: Mask assisted fabrication of nanoislands of BiFeO3 by ion beam milling. J. Appl. Phys. 113, 154101 (2013)

    Google Scholar 

  52. Vrejoiu, I., Morelli, A., Biggemann, D., Pippel, E.: Ordered arrays of multiferroic epitaxial nanostructures. Nano Rev. 2, 7364 (2011)

    Article  Google Scholar 

  53. Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G., Scott, J.F.: β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B. 77, 014110 (2008)

    Article  Google Scholar 

  54. Lee, W., Han, H., Lotnyk, A., Schubert, M.A., Senz, S., Alexe, M., Hesse, D., Baik, S., Gösele, U.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402–407 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Norbert Schammelt for the FIB fabrication of the BFO structures, Florian Johann for the growth of the BFO films and fruitful assistance, and German Science Foundation for financial support in the framework of SFB762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morelli, A., Vrejoiu, I. (2013). Epitaxial Ferroelectric Nanostructures Fabricated by FIB Milling. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_2

Download citation

Publish with us

Policies and ethics