Skip to main content

FIB Patterning of Stainless Steel for the Development of Nano-structured Stent Surfaces for Cardiovascular Applications

  • Chapter
  • First Online:
  • 1890 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

Stent implantation is a percutaneous interventional procedure that mitigates vessel stenosis, providing mechanical support within the artery and as such a very valuable tool in the fight against coronary artery disease. However, stenting causes physical damage to the arterial wall. It is well accepted that a valuable route to reduce in-stent re-stenosis can be based on promoting cell response to nano-structured stainless steel (SS) surfaces such as by patterning nano-pits in SS. In this regard patterning by focused ion beam (FIB) milling offers several advantages for flexible prototyping. On the other hand FIB patterning of polycrystalline metals is greatly influenced by channelling effects and redeposition. Correlative microscopy methods present an opportunity to study such effects comprehensively and derive structure–property understanding that is important for developing improved patterning. In this chapter we present a FIB patterning protocol for nano-structuring features (concaves) ordered in rectangular arrays on pre-polished 316L stainless steel surfaces. An investigation based on correlative microscopy approach of the size, shape and depth of the developed arrays in relation to the crystal orientation of the underlying SS domains is presented. The correlative microscopy protocol is based on cross-correlation of top-view scanning electron microscopy, electron backscattering diffraction, atomic force microscopy and cross-sectional (serial) sectioning. Various FIB tests were performed, aiming at improved productivity by preserving nano-size accuracy of the patterned process. The optimal FIB patterning conditions for achieving reasonably high throughput (patterned rate of about 0.03 mm2/h) and nano-size accuracy in dimensions and shapes of the features are discussed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dugdale, D.C.: Stent, in Medicine Plus, 2012. http://www.nlm.nih.gov/medlineplus/ency/article/002303.htm

  2. Balamurugan, A., Rajeswari, S., Balossier, G., Rebelo, A.H.S., Ferreira, J.M.F.: Corrosion aspects of metallic implants—an overview. Mater. Corrosion 59(11), 855–869 (2008)

    Article  Google Scholar 

  3. O’Brien, B., Carroll, W.: The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5(4), 945–958 (2009)

    Article  Google Scholar 

  4. Clerc, C.O., Jedwab, M.R., Mayer, D.W., Thompson, P.J., Stinson, J.S.: Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. J. Biomed. Mater. Res. 38(3), 229–234 (1997)

    Article  Google Scholar 

  5. Craig, C., Friend, C., Edwards, M., Cornish, L., Gokcen, N.: Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J. Alloys Compd. 361(1), 187–199 (2003)

    Article  Google Scholar 

  6. Craig, C., Friend, C., Edwards, M., Gokcen, N.: Tailoring radiopacity of austenitic stainless steel for coronary stents. In: Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8–10 September 2003, Anaheim, California. 2004. American Society for Metals

    Google Scholar 

  7. Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., Haverich, A.: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6), 651–656 (2003)

    Article  Google Scholar 

  8. Lüscher, T.F., Steffel, J., Eberli, F.R., Joner, M., Nakazawa, G., Tanner, F.C., Virmani, R.: Drug-eluting stent and coronary thrombosis biological mechanisms and clinical implications. Circulation 115(8), 1051–1058 (2007)

    Article  Google Scholar 

  9. Daemen, J., Wenaweser, P., Tsuchida, K., Abrecht, L., Vaina, S., Morger, C., Kukreja, N., Jüni, P., Sianos, G., Hellige, G.: Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369(9562), 667–678 (2007)

    Article  Google Scholar 

  10. Chou, L., Firth, J.D., Uitto, V.-J., Brunette, D.M.: Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108(4), 1563–1573 (1995)

    Google Scholar 

  11. Boyan, B.D., Hummert, T.W., Dean, D.D., Schwartz, Z.: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2), 137–146 (1996)

    Article  Google Scholar 

  12. Craighead, H.G., James, C.D., Turner, A.M.P.: Chemical and topographical patterning for directed cell attachment. Curr. Opin. Solid State Mater. Sci. 5(2–3), 177–184 (2001)

    Article  Google Scholar 

  13. Curtis, A., Wilkinson, C.: Nantotechniques and approaches in biotechnology. Trends Biotechnol. 19(3), 97–101 (2001)

    Article  Google Scholar 

  14. Koegler, P., Clayton, A., Thissen, H., Santos, G.N.C., Kingshott, P.: The influence of nanostructured materials on biointerfacial interactions. Adv. Drug Deliv. Rev. 64(15), 1820–1839 (2012)

    Article  Google Scholar 

  15. Nikkhah, M., Edalat, F., Manoucheri, S., Khademhosseini, A.: Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33(21), 5230–5246 (2012)

    Article  Google Scholar 

  16. Chen, L., Han, D., Jiang, L.: On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids Surf. B Biointerfaces 85(1), 2–7 (2011)

    Article  Google Scholar 

  17. Gentile, F., Tirinato, L., Battista, E., Causa, F., Liberale, C., di Fabrizio, E.M., Decuzzi, P.: Cells preferentially grow on rough substrates. Biomaterials 31(28), 7205–7212 (2010)

    Article  Google Scholar 

  18. Kasemo, B.: Biological surface science. Surf. Sci. 500(1–3), 656–677 (2002)

    Article  Google Scholar 

  19. Duncan, A.C., Weisbuch, F., Rouais, F., Lazare, S., Baquey, C.: Laser microfabricated model surfaces for controlled cell growth. Biosens. Bioelectron. 17(5), 413–426 (2002)

    Article  Google Scholar 

  20. Berry, C.C., Campbell, G., Spadiccino, A., Robertson, M., Curtis, A.S.G.: The influence of microscale topography on fibroblast attachment and motility. Biomaterials 25(26), 5781–5788 (2004)

    Article  Google Scholar 

  21. Yim, E.K.F., Leong, K.W.: Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1), 10–21 (2005)

    Google Scholar 

  22. Falconnet, D., Csucs, G., Grandin, H.M., Textor, T.: Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006)

    Article  Google Scholar 

  23. Yu, L.M.Y., Leipzig, N.D., Shoichet, M.S.: Promoting neuron adhesion and growth. Mater. Today 11(5), 36–43 (2008)

    Article  Google Scholar 

  24. Roach, P., Parker, T., Gadegaard, N., Alexander, M.R.: Surface strategies for control of neuronal cell adhesion: a review. Surf. Sci. Rep. 65(6), 145–173 (2010)

    Article  Google Scholar 

  25. Nazneen, F., Herzog, G., Arrigan, D.W., Caplice, N., Benvenuto, P., Galvin, P., Thompson, M.: Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J. Biomed. Mater. Res. B Appl. Biomater. 100, 1989–2014 (2012)

    Article  Google Scholar 

  26. Norman, J.J., Desai, T.A.: Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34(1), 89–101 (2006)

    Article  Google Scholar 

  27. Buzea, C., Beydaghyan, G., Elliott, C., Robbie, K.: Control of power law scaling in the growth of silicon nanocolumn pseudo-regular arrays deposited by glancing angle deposition. Nanotechnology 16(10), 1986 (2005)

    Article  Google Scholar 

  28. Dolatshahi-Pirouz, A., Hovgaard, M.B., Rechendorff, K., Chevallier, J., Foss, M., Besenbacher, F.: Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition. Phys. Rev. B 77(11), 115427 (2008)

    Article  Google Scholar 

  29. Tseng, A.A., Notargiacomo, A.: Nanoscale fabrication by nonconventional approaches. J. Nanosci. Nanotechnol. 5(5), 683–702 (2005)

    Article  Google Scholar 

  30. Sarkar, S., Dadhania, M., Rourke, P., Desai, T.A., Wong, J.Y.: Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomater. 1(1), 93–100 (2005)

    Article  Google Scholar 

  31. Houtchens, G.R., Foster, M.D., Desai, T.A., Morgan, E.F., Wong, J.Y.: Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. J. Biomech. 41(4), 762–769 (2008)

    Article  Google Scholar 

  32. Biela, S.A., Su, Y., Spatz, J.P., Kemkemer, R.: Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano–micro range. Acta Biomater. 5(7), 2460–2466 (2009)

    Article  Google Scholar 

  33. Green, A.M., Jansen, J.A., Van der Waerden, J.P.C.M., Von Recum, A.F.: Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface. J. Biomed. Mater. Res. 28(5), 647–653 (1994)

    Article  Google Scholar 

  34. Walboomers, X., Croes, H., Ginsel, L., Jansen, J.: Contact guidance of rat fibroblasts on various implant materials. J. Biomed. Mater. Res. 47(2), 204–212 (1999)

    Article  Google Scholar 

  35. Walboomers, X., Croes, H., Ginsel, L., Jansen, J.: Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19(20), 1861–1868 (1998)

    Article  Google Scholar 

  36. Walboomers, X., Ginsel, L., Jansen, J.: Early spreading events of fibroblasts on microgrooved substrates. J. Biomed. Mater. Res. 51(3), 529–534 (2000)

    Article  Google Scholar 

  37. Walboomers, X., Monaghan, W., Curtis, A., Jansen, J.: Attachment of fibroblasts on smooth and microgrooved polystyrene. J. Biomed. Mater. Res. 46(2), 212–220 (1999)

    Article  Google Scholar 

  38. Loesberg, W.A., te Riet, J., van Delft, F.C., Schön, P., Figdor, C.G., Speller, S., van Loon, J.J., Walboomers, X.F., Jansen, J.A.: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27), 3944–3951 (2007)

    Article  Google Scholar 

  39. Dalby, M.J., Gadegaard, N., Riehle, M.O., Wilkinson, C.D.W., Curtis, A.S.G.: Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36(10), 2005–2015 (2004)

    Article  Google Scholar 

  40. Dalby, M.J., Gadegaard, N., Wilkinson, C.D.: The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J. Biomed. Mater. Res. A 84(4), 973–979 (2008)

    Article  Google Scholar 

  41. Yim, E.K.F., Reano, R.M., Pang, S.W., Yee, A.F., Chen, C.S., Leong, K.W.: Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26), 5405–5413 (2005)

    Article  Google Scholar 

  42. Lee, S.W., Kim, S.Y., Rhyu, I.C., Chung, W.Y., Leesungbok, R., Lee, K.W.: Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin. Oral Implants Res. 20(1), 56–66 (2009)

    Article  Google Scholar 

  43. Ito, T., Okazaki, S.: Pushing the limits of lithography. Nature 406(6799), 1027–1031 (2000)

    Article  Google Scholar 

  44. Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint of sub‐25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), 3114–3116 (1995)

    Article  Google Scholar 

  45. Raffa, V., Castrataro, P., Menciassi, A., Dario, P.: Focused Ion Beam as a Scanning Probe: Methods and Applications. Applied Scanning Probe Methods II, pp. 361–412. Springer, New York, NY (2006)

    Book  Google Scholar 

  46. Iordanova, I., Antonov, V., Gurkovsky, S.: Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surf. Coat. Technol. 153(2–3), 267–275 (2002)

    Article  Google Scholar 

  47. Duncan, A.C., Rouais, F., Lazare, S., Bordenave, L., Baquey, C.: Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids Surf. B Biointerfaces 54(2), 150–159 (2007)

    Article  Google Scholar 

  48. Kalantar-Zadeh, K., Fry, B.: Nanotechnology Enabled Sensors. Springer, New York, NY (2007)

    Google Scholar 

  49. Volkert, C., Minor, A.: Focused ion beam microscopy and micromachining. MRS Bull. 32(5), 389–395 (2007)

    Article  Google Scholar 

  50. Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A.J., Gleeson, J.P., Redmond, G., Arrigan, D.W.: Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79(8), 3048–3055 (2007)

    Article  Google Scholar 

  51. Choi, C.H., Heydarkhan-Hagvall, S., Wu, B.M., Dunn, J.C., Beygui, R.E., Kim, C.J.: Cell growth as a sheet on three‐dimensional sharp‐tip nanostructures. J. Biomed. Mater. Res. A 89(3), 804–817 (2009)

    Article  Google Scholar 

  52. Raffa, V., Vittorio, O., Pensabene, V., Menciassi, A., Dario, P.: FIB-nanostructured surfaces and investigation of bio/nonbio interactions at the nanoscale. IEEE Trans. NanoBiosci. 7(1), 1–10 (2008)

    Article  Google Scholar 

  53. Joshi, K., Singh, P., Verma, S.: Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam. Biofabrication 1(2), 025002 (2009)

    Article  Google Scholar 

  54. Choubey, A., Marton, D., Sprague, E.A.: Human aortic endothelial cell response to 316L stainless steel material microstructure. J. Mater. Sci. Mater. Med. 20(10), 2105–2116 (2009)

    Article  Google Scholar 

  55. Misra, R.D., Nune, C., Pesacreta, T.C., Somani, M.C., Karjalainen, L.P.: Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation–annealing sequence. Acta Biomater. 9, 6245–6258 (2013)

    Article  Google Scholar 

  56. Russell, A., Lee, K.L.: Structure-Property Relations in Nonferrous Metals. Wiley-Interscience, New York, NY (2005)

    Book  Google Scholar 

  57. Shi, D.: Introduction to Biomaterials. World Scientific, London (2006)

    Google Scholar 

  58. Nazneen, F., Galvin, P., Arrigan, D.W., Thompson, M., Benvenuto, P., Herzog, G.: Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing. J. Solid State Electrochem. 16(4), 1389–1397 (2012)

    Article  Google Scholar 

  59. Dalby, M.J., Berry, C.C., Riehle, M.O., Sutherland, D.S., Agheli, H., Curtis, A.S.G.: Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295(2), 387–394 (2004)

    Article  Google Scholar 

  60. Schmidt, M., Nazneen, F., Georgiev, Y., Herzog, G., Galvin, P., Petkov, N.: FIB patterning of stainless steel for the development of nano-structured stent surfaces for cardiovascular applications. J. Phys. Conf. 371(1), 012065 (2012)

    Article  Google Scholar 

  61. Nazneen, F., Schmidt, M., McLoughlin, E., Petkov, N., Herzog, G., Arrigan, D., Galvin, P.: Nano-texturing of medical-grade 316L stainless steel by focused ion beam for endothelial cell studies. J. Nanosci. Nanotechnol. 13, 5283–5290 (2013)

    Google Scholar 

  62. Feitknecht, W.: Über den angriff von krystallen durch kanalstrahlen. Helv. Chim. Acta 7(1), 825–842 (1924)

    Article  Google Scholar 

  63. Wehner, G.K.: Controlled sputtering of metals by low-energy Hg ions. Phys. Rev. 102(3), 690–704 (1956)

    Article  Google Scholar 

  64. Wehner, G.K., Rosenberg, D.: Angular distribution of sputtered material. J. Appl. Phys. 31(1), 177–179 (1960)

    Article  Google Scholar 

  65. Sigmund, P.: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184(2), 383–416 (1969)

    Article  Google Scholar 

  66. Bean, K.E.: Anisotropic etching of silicon. IEEE Trans. Electron Dev. 25(10), 1185–1193 (1978)

    Article  Google Scholar 

  67. Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H.: Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612–3626 (1990)

    Article  Google Scholar 

  68. Schmidt, M., Nazneen, F., Herzog, G., Arrigan, D., Galvin, P., Keeney, L., Petkov, N., Holmes, J.D.: to be submitted

    Google Scholar 

  69. Schmidt, M., Nazneen, F., Herzog, G., Arrigan, D., Galvin, P., Dickinson, C., de Silva, J.P., Scanlan, D., O’Hara, N., Cross, G.L.W.: Correlative microscopy study of FIB patterned stainless steel surfaces as novel nano-structured stents for cardiovascular applications. MRS Proc 2012. 1466(1)

    Google Scholar 

  70. Giannuzzi, L., Stevie, F.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197–204 (1999)

    Article  Google Scholar 

  71. Schwartz, A.J., Kumar, M., Adams, B.L., Field, D.P.: Electron Backscatter Diffraction in Materials Science. Springer, New York, NY (2009)

    Book  Google Scholar 

  72. Stark, Y., Fromter, R., Stickler, D., Oepen, H.P.: Sputter yields of single-and polycrystalline metals for application in focused ion beam technology. J. Appl. Phys. 105(1), 013542-1–013542-5 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through a Starting Investigator Research Grant (09/SIRG/I1621) of the Science Foundation Ireland (SFI), the National Biophotonics and Imaging Platform, Ireland (NBIPI) and the Integrated NanoScience Platform for Ireland (INSPIRE) initiatives funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013. The authors are grateful to Dr Shanthi Muttukrishna (Department of Obstetrics and Gynaecology, University College Cork) for the gift of the human umbilical vein endothelial vein. Dr Lynette Keeney is gratefully acknowledged for performance of the AFM scans and line profiles for the correlative microscopy part of this chapter. Dr Calum Dickinson is gratefully acknowledged for contributing the EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, M., Nazneen, F., Galvin, P., Petkov, N., Holmes, J.D. (2013). FIB Patterning of Stainless Steel for the Development of Nano-structured Stent Surfaces for Cardiovascular Applications. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_16

Download citation

Publish with us

Policies and ethics