Skip to main content

FIB Design for Nanofluidic Applications

  • Chapter
  • First Online:
  • 1877 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

In this chapter we briefly review the techniques available to researchers in the nanofluidic domain to fabricate nanopores and nanochannels. In this context the focused ion beam (FIB) technique will be introduced as a useful and versatile tool for nanofluidics. We illustrate it with two specific examples involving nanopores as building blocks for nanofluidics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xia, D., Yan, J.C., Hou, S.F.: Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 8, 2787–2801 (2012)

    Article  Google Scholar 

  2. Daiguji, H., Yang, P., Szeri, A.J., Majumdar, A.: Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4, 2315–2321 (2004)

    Article  Google Scholar 

  3. Guo, L.J., Cheng, X., Chou, C.F.: Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4, 69–73 (2004)

    Article  Google Scholar 

  4. Mihovilovic, M., Hagerty, N., Stein, D.: Statistics of DNA capture by a solid-state nanopore. Phys. Rev. Lett. 110, 028102 (2013)

    Article  Google Scholar 

  5. Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)

    Article  Google Scholar 

  6. Ko, S.H., Song, Y.A., Kim, S.J., Kim, M., Han, J., Kang, K.H.: Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12, 4472–4482 (2012)

    Article  Google Scholar 

  7. Karnik, R., Fan, R., Yue, M., Li, D., Yang, P., Majumdar, A.: Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005)

    Article  Google Scholar 

  8. Howard, R.E., Liao, P.F., Skocpol, W.J., Jackel, L.D., Craighead, H.G.: Microfabrication as a scientific tool. Science 221, 117–121 (1983)

    Article  Google Scholar 

  9. Chauvet, F., Geoffroy, S., Hamoumi, A., Prat, M., Joseph, P.: Roles of gas in capillary filling of nanoslits. Soft Matter 8, 10738–10749 (2012)

    Article  Google Scholar 

  10. Rothschild, M.: Projection optical lithography. Mater. Today 8, 18–24 (2005)

    Article  Google Scholar 

  11. Reccius, C.H., Mannion, J.T., Cross, J.D., Craighead, H.G.: Projection optical lithography, compression and free expansion of single DNA molecules in nanochannels. Phys. Rev. Lett. 95, 268101 (2005)

    Article  Google Scholar 

  12. Hu, W., Sarveswaran, K., Lieberman, M., Bernstein, G.H.: Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate). J. Vac. Sci. Technol. 22, 1711–1717 (2004)

    Article  Google Scholar 

  13. Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L., Launois, H.: Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111–117 (2000)

    Article  Google Scholar 

  14. Mahoney, J.F., Yahiku, A.Y., Daley, H.L., David Moore, R., Perel, J.: Electrohydrodynamic ion source. J. Appl. Phys. 40, 5101–5106 (1969)

    Article  Google Scholar 

  15. Krohn, V.E., Ringo, G.R.: Ion source of high brightness using liquid metal. Appl. Phys. Lett. 27, 479 (1975)

    Article  Google Scholar 

  16. Seliger, R.L., Kubena, R.L., Olney, R.D., Ward, J.W., Wang, V.: High-resolution, ion-beam processes for microstructure fabrication. J. Vac. Sci. Technol. 16, 1610–1613 (1979)

    Article  Google Scholar 

  17. Campbell, L.C., Wilkinson, M.J., Manz, A., Camilleri, P., Humphreys, C.J.: Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 4, 225–229 (2004)

    Article  Google Scholar 

  18. Arscott, S., Troadec, D.: A nanofluidic emitter tip obtained by focused ion beam nanofabrication. Nanotechnology 16, 2295 (2005)

    Article  Google Scholar 

  19. Menard, L.D., Ramsey, J.M.: Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 11, 512–517 (2010)

    Article  Google Scholar 

  20. Maleki, T., Mohammadi, S., Ziaie, B.: A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 20, 105302 (2009)

    Article  Google Scholar 

  21. Fanzio, P., Mussi, V., Manneschi, C., Angeli, E., Firpo, G., Repetto, L., Valbusa, U.: DNA detection with a polymeric nanochannel device. Lab Chip 17, 2961–2966 (2011)

    Article  Google Scholar 

  22. Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., et al.: Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011)

    Article  Google Scholar 

  23. Guo, W., Cao, L., Xia, J., Nie, F.Q., Ma, W., Xue, J., Song, Y., Zhu, D., Wang, Y., Jiang, L.: Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010)

    Article  Google Scholar 

  24. Kalman, E.B., Sudre, O., Vlassiouk, I., Siwy, Z.S.: Control of ionic transport through gated single conical nanopores. Anal. Bioanal. Chem. 394, 413–419 (2009)

    Article  Google Scholar 

  25. Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer, New York (2005)

    Book  Google Scholar 

  26. Gierak, J., Madouri, A., Biance, A.L., Bourhis, E., Patriarche, G., Ulysse, C., et al.: Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007)

    Article  Google Scholar 

  27. Gierak, J., Bourhis, E., Faini, G., Patriarche, G., Madouri, A., Jede, R., et al.: Exploration of the ultimate patterning potential achievable with focused ion beams. Ultramicroscopy 109, 457–462 (2009)

    Article  Google Scholar 

  28. Kim, C.S., Ahn, S.H., Jang, D.Y.: Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86, 1014–1035 (2012)

    Article  Google Scholar 

  29. Lee, C., Joly, L., Siria, A., Biance, A.L., Fulcrand, R., Bocquet, L.: Large apparent electric size of solid-state nanopores due to spatially extended surface conduction. Nano Lett. 12, 4037–4044 (2012)

    Article  Google Scholar 

  30. Stein, D., Kruithof, M., Dekker, C.: Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004)

    Article  Google Scholar 

  31. Schoch, R.B., Lintel, H.V., Renaud, P.: Effect of the surface charge on ion transport through nanoslits. Phys. Fluids 17, 100604 (2005)

    Article  Google Scholar 

  32. Bocquet, L., Charlaix, E.: Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010)

    Article  Google Scholar 

  33. Khair, A.S., Squires, T.M.: Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. J. Fluid Mech. 615, 323–334 (2008)

    Article  Google Scholar 

  34. Hall, J.E.: Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975)

    Article  Google Scholar 

  35. Kowalczyk, S.W., Grosberg, A.Y., Rabin, Y., Dekker, C.: Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011)

    Article  Google Scholar 

  36. Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., Drndic, M.: Rapid electronic detection of probe-specific MicroRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010)

    Article  Google Scholar 

  37. Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K., Dekker, C.: DNA translocation through graphene nanopores. Nano Lett. 8, 3163–3197 (2010)

    Article  Google Scholar 

  38. Ho, C., Qiao, R., Heng, J.B., Chatterjee, A., Timp, R.J., Aluru, N.R., Timp, G.: Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl. Acad. Sci. U. S. A. 102, 10445–10450 (2005)

    Article  Google Scholar 

  39. Smeets, R.M., Keyser, U.F., Krapf, D., Wu, M.Y., Dekker, N.H., Dekker, C.: Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006)

    Article  Google Scholar 

  40. Hille, B.J.: Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51, 199–219 (1968)

    Article  Google Scholar 

  41. Merchant, C.A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., et al.: DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010)

    Article  Google Scholar 

  42. Howorka, S., Siwy, Z.: Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009)

    Article  Google Scholar 

  43. Holt, J., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    Article  Google Scholar 

  44. Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010)

    Article  Google Scholar 

  45. Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, R., Blase, X., Purcell, S., Bocquet, L.: Giant osmotic energy conversion measured in a single transmembrane boron-nitride nanotube. Nature 494, 455–458 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank CLYM for providing access to FIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fulcrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fulcrand, R., Blanchard, N.P., Biance, AL., Siria, A., Poncharal, P., Bocquet, L. (2013). FIB Design for Nanofluidic Applications. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_15

Download citation

Publish with us

Policies and ethics