Skip to main content

The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion

  • Chapter
  • First Online:
MoS2

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 21))

Abstract

A series of environmental problems have emerged owing to the excess consumption of fossil fuels. Development of clean alternative energy has turned into an urgent issue facing to all the nations. Nanostructured MoS2, with particular chemical and physical properties, has been studied extensively and intensively over the past years. A comprehensive overview of the progress achieved within the application of MoS2 in energy storage and conversion will be given, which is composed of lithium ion batteries, Mg ion batteries, dye-sensitized solar cells and photocatalytic hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yue, G., Lin, J.Y., Tai, S.Y.: A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012)

    Article  CAS  Google Scholar 

  2. Zhang, X., Luster, B., Church A., et al.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1(3), 735–739 (2009)

    Google Scholar 

  3. Wang, S., Jiang, X., Zheng, H., et al.: Solvothermal synthesis of MoS2/Carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci. Nanotechnol. Lett. 4(4), 378–383 (2012)

    Google Scholar 

  4. Li, H., Li, W.J., Ma, L., et al.: Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloy. Compd. 471(1–2), 442–447 (2009)

    Article  CAS  Google Scholar 

  5. Feng, C.Q., Ma, J., Li, H., et al.: Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)

    Article  CAS  Google Scholar 

  6. Ding, S.J., Zhang, D.Y., Chen, J.S., et al.: Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012)

    Article  CAS  Google Scholar 

  7. Wang, M., Li, G., Xu, H., et al.: Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 5(3), 1003–1008 (2013)

    Google Scholar 

  8. Tenne, R., Margulis, L., Genut, M., et al.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444–446 (1992)

    Article  CAS  Google Scholar 

  9. Feldman, Y., Wasserman, E., Srolovitz, D.J., et al.: High-rate, gas-phase growth of Mos2 nested inorganic fullerenes and nanotubes. Science 267(5195), 222–225 (1995)

    Article  CAS  Google Scholar 

  10. Feldman, Y., Frey, G.L., Homyonfer, M., et al.: Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118(23), 5362–5367 (1996)

    Article  CAS  Google Scholar 

  11. Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120(4), 734–742 (1998)

    Article  CAS  Google Scholar 

  12. Nath, M., Govindaraj, A., Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001)

    Article  CAS  Google Scholar 

  13. Bonneau, P.R., Jarvis, R.F., Kaner, R.B.: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510–512 (1991)

    Article  CAS  Google Scholar 

  14. Mdleleni, M.M., Hyeon, T., Suslick, K.S.: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120(24), 6189–6190 (1998)

    Article  CAS  Google Scholar 

  15. Lee, H., Kanai, M., Kawai, T.: Preparation of transition metal chalcogenide thin films by pulsed laser ablation. Thin Solid Films 277(1–2), 98–100 (1996)

    Article  CAS  Google Scholar 

  16. Vollath, D., Szabo, D.V.: Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett. 35(3–4), 236–244 (1998)

    Article  CAS  Google Scholar 

  17. Smith Ronan, J., King Paul, J., Lotya, M., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944 (2011)

    Google Scholar 

  18. Yao, Y., Lin, Z., Li, Z., et al.: Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494–13499 (2012)

    Google Scholar 

  19. Lee, Y.H., Zhang, X.Q., Zhang, W., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)

    Google Scholar 

  20. Zeng, Z., Yin, Z., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem.-Int. Ed. 50(47), 11093–11097 (2011)

    Google Scholar 

  21. Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., et al.: Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)

    Article  CAS  Google Scholar 

  22. Chen, X.H., Fan, R.: Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001)

    Article  CAS  Google Scholar 

  23. Chen, J., Kuriyama, N., Yuan, H., et al.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123(47), 11813–11814 (2001)

    Article  CAS  Google Scholar 

  24. Ding, S.J., Chen, J.S., Lou, X.W.: Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem.-A Eur. J. 17(47), 13142–13145 (2011)

    Article  CAS  Google Scholar 

  25. Chhowalla, M., Amaratunga, G.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407(6801), 164–167 (2000)

    Article  CAS  Google Scholar 

  26. Zhang, J., Soon Jia, M., Loh Kian, P., et al.: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370–2376 (2007)

    Google Scholar 

  27. Divigalpitiya, W.M.R., Frindt, R.F., Morrison, S.R.: Inclusion systems of organic-molecules in restacked single-layer molybdenum-disulfide. Science 246(4928), 369–371 (1989)

    Google Scholar 

  28. Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)

    Article  CAS  Google Scholar 

  29. Park, S.K., Yu, S.H., Woo, S., et al.: A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 42(7), 2399–2405 (2013)

    Article  CAS  Google Scholar 

  30. Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414(6861), 332–337 (2001)

    Article  CAS  Google Scholar 

  31. Sen, U.K., Mitra, S.: High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 5(4), 1240–1247 (2013)

    Article  CAS  Google Scholar 

  32. Yang, L.C., Wang, S.N., Mao, J.J., et al.: Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25(8), 1180–1184 (2013)

    Article  CAS  Google Scholar 

  33. Bruce Peter G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. chem.-Int. ed. 47(16), 2930–2946 (2008)

    Google Scholar 

  34. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004)

    Article  CAS  Google Scholar 

  35. Zhou, X.S., Wan, L.J., Guo, Y.G.: Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013)

    Article  CAS  Google Scholar 

  36. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)

    Article  CAS  Google Scholar 

  37. Liu, H., Su, D.W., Zhou, R.F., et al.: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012)

    Article  CAS  Google Scholar 

  38. Sathish, M., Tomai, T., Honma, I.: Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 217, 85–91 (2012)

    Article  CAS  Google Scholar 

  39. Chen, S., Wang, Y., Ahn, H., et al.: Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J. Power Sources 216, 22–27 (2012)

    Google Scholar 

  40. Park, S.K., Yu, S.H., Woo, S., et al.: A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Cryst. Eng. Comm. 14(24), 8323–8325 (2012)

    Article  CAS  Google Scholar 

  41. Hwang, H., Kim, H., Cho, J.: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)

    Article  CAS  Google Scholar 

  42. Xiao, J., Choi, D.W., Cosimbescu, L., et al.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)

    Article  CAS  Google Scholar 

  43. Wang, Z., Chen, T., Chen, W.X., et al.: CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater. Chem. A 1(6), 2202–2210 (2013)

    Article  Google Scholar 

  44. Zhang, C.F., Wu, H.B., Guo, Z.P., et al.: Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7–10 (2012)

    Article  CAS  Google Scholar 

  45. Du, G.D., Guo, Z.P., Wang, S.Q., et al.: Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46(7), 1106–1108 (2010)

    Article  CAS  Google Scholar 

  46. Wang, Q., Li, J.H.: Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 111(4), 1675–1682 (2007)

    Article  CAS  Google Scholar 

  47. Nogueira, A., Znaiguia, R., Uzio, D., et al.: Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: synthesis and HDS catalytic properties. Appl. Catal. A-Gen. 429, 92–105 (2012)

    Google Scholar 

  48. Rapoport, L., Bilik, Y., Feldman, Y., et al.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387(6635), 791–793 (1997)

    Article  CAS  Google Scholar 

  49. Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)

    Article  CAS  Google Scholar 

  50. Bindumadhavan, K., Srivastava, S.K., Mahanty, S.: MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49(18), 1823–1825 (2013)

    Article  CAS  Google Scholar 

  51. Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)

    Article  CAS  Google Scholar 

  52. Li, H., Wang, Z., Chen, L., et al.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21(45), 4593–4607 (2009)

    Google Scholar 

  53. Chen, J., Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)

    Article  CAS  Google Scholar 

  54. Chang, K., Chen, W.X., Ma, L., et al.: Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21(17), 6251–6257 (2011)

    Article  CAS  Google Scholar 

  55. Chang, K., Chen, W.X.: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011)

    Article  CAS  Google Scholar 

  56. Das, S.K., Mallavajula, R., Jayaprakash, N., et al.: Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J. Mater. Chem. 22(26), 12988–12992 (2012)

    Article  CAS  Google Scholar 

  57. Chang, K., Chen, W.X.: Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 21(43), 17175–17184 (2011)

    Article  CAS  Google Scholar 

  58. Chang, K., Chen, W.X.: In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47(14), 4252–4254 (2011)

    Article  CAS  Google Scholar 

  59. Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)

    Article  CAS  Google Scholar 

  60. Peng, B., Chen, J.: Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 253(23–24), 2805–2813 (2009)

    Article  CAS  Google Scholar 

  61. Aurbach, D., Suresh Gurukar, S., Levi, E., et al.: Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260 (2007)

    Google Scholar 

  62. Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)

    Article  CAS  Google Scholar 

  63. Novak, P., Imhof, R., Haas, O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim. Acta 45(1–2), 351–367 (1999)

    Article  CAS  Google Scholar 

  64. Liang, Y.L., Feng, R.J., Yang, S.Q., et al.: Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23(5), 640 (2011)

    Article  CAS  Google Scholar 

  65. Tao, Z.L., Xu, L.N., Gou, X.L., et al.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 18, 2080–2081 (2004)

    Article  Google Scholar 

  66. Nuli, Y., Yang, J., Li, Y., et al.: Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46(21), 3794–3796 (2010)

    Google Scholar 

  67. Li, X.L., Li, Y.D.: MoS2 nanostructures: synthesis and electrochemical Mg2 + intercalation. J Phys. Chem. B 108(37), 13893–13900 (2004)

    Article  CAS  Google Scholar 

  68. Liu, C.J., Tai, S.Y., Chou, S.W., et al.: Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22(39), 21057–21064 (2012)

    Article  CAS  Google Scholar 

  69. Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346), 737–740 (1991)

    Article  CAS  Google Scholar 

  70. Gratzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  CAS  Google Scholar 

  71. Graetzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11SI), 1788–1798 (2009)

    Google Scholar 

  72. Lin, J.Y., Chan, C.Y., Chou, S.W.: Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49(14), 1440–1442 (2013)

    Article  CAS  Google Scholar 

  73. Olsen, E., Hagen, G., Lindquist, S.E.: Dissolution of platinum in methoxy propionitrile containing LiI/I-2. Sol. Energy Mater. Sol. Cells 63(3), 267–273 (2000)

    Article  CAS  Google Scholar 

  74. Kay, A., Gratzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)

    Article  CAS  Google Scholar 

  75. Imoto, K., Takahashi, K., Yamaguchi, T., et al.: High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003)

    Article  CAS  Google Scholar 

  76. Murakami Takurou, N., Graetzel, M.: Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. ACTA. 361(3), 572–580 (2008)

    Google Scholar 

  77. Banks, C.E., Davies, T.J., Wildgoose, G.G., et al.: Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829–841 (2005)

    Article  Google Scholar 

  78. Xiao, Y., Lin, J.Y., Tai, S.Y., et al.: Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22(37), 19919–19925 (2012)

    Article  CAS  Google Scholar 

  79. Wang, M., Anghel Alina, M., Marsan, B., et al.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131(44), 15976 (2009)

    Article  CAS  Google Scholar 

  80. Lin, J.Y., Liao, J.H., Chou, S.W.: Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 56(24), 8818–8826 (2011)

    Article  CAS  Google Scholar 

  81. Sun, H., Qin, D., Huang, S., et al.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4(8), 2630–2637 (2011)

    Article  CAS  Google Scholar 

  82. Jiang, Q.W., Li, G.R., Gao, X.P.: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)

    Article  Google Scholar 

  83. Li, G.R., Wang, F., Jiang, Q.W., et al.: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 49(21), 3653–3656 (2010)

    Google Scholar 

  84. Jang, J.S., Ham, D.J., Ramasamy, E., et al.: Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010)

    Google Scholar 

  85. Wu, M., Lin, X., Hagfeldt, A., et al.: Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 50(15), 3520–3524 (2011)

    Google Scholar 

  86. Wu, M., Wang, Y., Lin, X., et al.: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)

    Article  CAS  Google Scholar 

  87. Zhou, W., Yin, Z., Du, Y., et al.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013)

    Article  CAS  Google Scholar 

  88. Mai, N., Tran Phong, D., Pramana Stevin, S., et al.: In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5(4), 1479–1482 (2013)

    Google Scholar 

  89. Andrew Frame, F., Osterloh Frank, E.: CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114(23), 10628–10633 (2010)

    Google Scholar 

  90. Hinnemann, B., Moses, P.G., Bonde, J., et al.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)

    Article  CAS  Google Scholar 

  91. Tran Phong, D., Pramana Stevin, S., Kale Vinayak, S., et al.: Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the Earth for hydrogen generation. Chem.-A Eur. J. 18(44), 13994–13999 (2012)

    Google Scholar 

  92. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)

    Article  CAS  Google Scholar 

  93. Min, S., Lu, G.: Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 co-catalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C. 116(48), 25415–25424 (2012)

    Google Scholar 

  94. Walter Michael, G., Warren Emily, L., Mckone James, R., et al.: Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010)

    Google Scholar 

  95. Chen, G., Li, D., Li, F., et al.: Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H-2 evolution activity under visible light irradiation. Appl. Catal. A-Gen. 443, 138–144 (2012)

    Google Scholar 

  96. Xu, Z., Wu, G., Yan, H., et al.: Photocatalytic H-2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114(4), 1963–1968 (2010)

    Article  Google Scholar 

  97. Zhang, W., Wang, Y., Wang, Z., et al.: Highly efficient and noble metal-free NiS/CdS photocatalysts for H-2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46(40), 7631–7633 (2010)

    Article  CAS  Google Scholar 

  98. Liu, H., Zhang, K., Jing, D., et al.: SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation. Int. J. Hydrogen Energy 35(13SI), 7080–7086 (2010)

    Google Scholar 

  99. Zhang, J., Yu, J., Zhang, Y., et al.: Visible light photocatalytic H-2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011)

    Google Scholar 

  100. Xu, Z., Han, J., Ma, G., et al.: Photocatalytic H-2 evolution on CdS loaded with WS2 as co-catalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011)

    Article  Google Scholar 

  101. Xu, Z., Yan, H., Wu, G., et al.: Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as co-catalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176 (2008)

    Article  Google Scholar 

  102. Xiang, Q., Yu, J., Jaroniec, M.: Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H-2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujiang Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Liang, J., Ding, S. (2014). The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion. In: Wang, Z. (eds) MoS2. Lecture Notes in Nanoscale Science and Technology, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02850-7_9

Download citation

Publish with us

Policies and ethics