Skip to main content

Fundamental Aspects in Modelling the Constitutive Behaviour of Fibered Soft Tissues

  • Chapter
  • First Online:
Book cover Advances in Numerical Simulation in Physics and Engineering

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 3))

  • 1240 Accesses

Abstract

Fibered soft tissues like ligament, tendons, cartilage or those composing the cardiovascular system among others are characterized by a complex behaviour derived from their specific internal composition and architecture that has to be considered when trying to simulate their response under physiological or pathological external loads, their interaction with external implants or during and after surgery. The evaluation of the acting stresses and strains on these tissues is essential in predicting possible failure (i.e., aneurisms, atherosclerotic plaques, ligaments rupture) or the evolution of their microstructure under changing mechanical environment (i.e. cardiac aging, atherosclerosis, ligament remodeling). As structural materials, fibered soft tissues undergo large deformations even under physiological loads and are almost incompressible and highly anisotropic, mainly due to the directional distribution of the different composing families of collagen fibers. In addition, they are non-linearly elastic under slowly-acting loads, viscoelastic, due both to the moving internal fluid in some tissues (i.e. cartilage) or to the inherent viscoelasticity of the solid matrix. They are also subjected to non-negligible initial stresses due to the growth and remodeling processes that act along their whole live. Finally, they are susceptible to suffer damage induced by the rupture of the fibers or tearing of the surrounding matrix. All these aspects should be considered for a full description of the constitutive behaviour of these materials, requiring an appropriate mathematical formulation and finite element implementation to get efficient simulations useful for a better understanding of their phsyiological function, the effect of pathologies or surgery as well as for surgery planning and design of implants among many other usual applications. In this work, formulations of all the different phenomena commented above in fibered soft tissues are presented. The effect of each of these aspects is analyzed in simplified examples to demonstrate the applicability of the models. Finally, different applications of clinical interest are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that x is a dummy variable used for integration purposes.

  2. 2.

    Note that, thinking about the numerical implementation of this procedure, the elastic strain tensor \(\boldsymbol{F}_{\mbox{ cp}}\) corresponds to the strain field associated to the displacement needed to make rs to satisfy the equilibrium equations. Thus, it constitutes an output of the Finite Element Method.

References

  1. Alastrué, V.: Some inelastic problems in the modeling of blood vessels. Applications to non-physiological states and vascular surgery. Ph.D. thesis, University of Zaragoza, Spain, Division of Structural Mechanics (2008)

    Google Scholar 

  2. Alastrué, V., Calvo, B., Peña, E., Doblare, M.: Biomechanical modeling of refractive corneal surgery. ASME J. Biomech. Eng. 128, 150–160 (2006)

    Article  Google Scholar 

  3. Alastrué, V., Peña, E., Martínez, M.A., Doblaré, M.: Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35, 1821–1837 (2007)

    Article  Google Scholar 

  4. Alastrué, V., García, A., Peña, E., Rodríguez, J.F., Martínez, M.A., Doblaré, M.: Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Meth. Eng. 26, 35–51 (2007)

    Google Scholar 

  5. Alastrué, V., Sáez, P., Martínez, M.A., Doblaré, M.: On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2007)

    Article  Google Scholar 

  6. Alastrué, V., Martínez, M.A., Doblaré, M., Menzel, A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling. J. Mech. Phys. Solids 57, 178–203 (2009)

    Article  MATH  Google Scholar 

  7. Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A visco-hyperelastic with damage for the knee ligaments under dynamic constraints. Comp. Meth, Biomech. Biomed. Eng. 5, 167–174 (2002)

    Google Scholar 

  8. Arruda, E.M., Boyce, M.C.: A three-Ddimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  9. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2(6), 1201–1225 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Butler, D.L., Guan, Y., Kay, M., Cummings, M., Feder, S., Levy, M.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25, 511–518 (1992)

    Article  Google Scholar 

  12. Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: An uncoupled directional damage model for fibered biological soft tissues. Formulation and computational aspects. Int. J. Numer. Meth. Eng. 69, 2036–2057 (2007)

    Article  MATH  Google Scholar 

  13. Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: Computational modeling of ligaments at non-physiological situations. Int. J. Comput. Vision Biomech. IJV&B. 1, 107–115 (2008)

    Google Scholar 

  14. Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblare, M., Natal, R., Ferreira, A.: On modeling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)

    Article  Google Scholar 

  15. Chaudhry, H.R., Bukiet, B., Davis, A., Ritter, A.B., Findley, T.: Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J. Biomech. 30, 57–62 (1997)

    Article  Google Scholar 

  16. Chuong, C.J., Fung, Y.C.: On residual stress in arteries. ASME J. Biomech. Eng. 108, 189–192 (1986)

    Article  Google Scholar 

  17. Crisco, J.J., Moore, D.C., McGovern, R.D.: Strain-rate sensityvity of the rabbit MCL diminishes at traumatic loading rates. J. Biomech. 35, 1379–1385 (2002)

    Article  Google Scholar 

  18. Dingemans, K., Teeling, P., Lagendijk, J.H., Becker, A.E.: Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)

    Article  Google Scholar 

  19. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  20. Fung, Y.C.: Biomechanics. Mechanical propeties of living tissues. Springer, New York (1993)

    Book  Google Scholar 

  21. Fung, Y.C., Liu, S.Q.: Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70, 2455–2470 (1991)

    Article  Google Scholar 

  22. García, A., Peña, E., Martínez, M.A.: Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions. Biorheology 49, 271–288 (2012)

    Google Scholar 

  23. Gardiner, J.C., Weiss, J.A., Rosenberg, T.D.: Strain in the human medial collateral ligament during valgus lading of the knee. Clin. Orthop. Relat. R. 391, 266–274 (2001)

    Article  Google Scholar 

  24. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  25. Graft, B.K., Vanderby, R. Jr., Ulm, M.J.: Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10, 90–96 (1994)

    Article  Google Scholar 

  26. Hayes, W.C., Mockros, L.F.: Viscoelastic constitutive relations for human articular cartilage. J. Appl. Physiol 18, 562–568 (1971)

    Google Scholar 

  27. Herz, C.S.: Bessel functions of matrix argument. Ann. Math. 61(3), 474–523 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  28. Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367, 3445–3475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of arteries. Philos. Trans. A Math. Phys. Eng. Sci. 466, 1551–1597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behaviour of arterial walls: continuum formultaion and finite element analysis. Eur. J. Mech. A Solids 21, 441–463 (2002)

    Article  MATH  Google Scholar 

  32. Holzapfel, G.A., Gasser, C.T., Sommer, G., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modeling. Am. J. Physiol Heart Circ. Physiol 289, H2048–H2058 (2005)

    Article  Google Scholar 

  33. Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol Heart Circ. Physiol 274, H1627–H1634 (1998)

    Google Scholar 

  34. Humphrey, J.D.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)

    Google Scholar 

  35. Humphrey, J.D., Yin, F.C.P.: Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65, 805–817 (1989)

    Article  Google Scholar 

  36. Johnson, G.A., Livesay, G.A., Woo, S.L.Y., Rajagopal, K.I.R.: A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118, 221–226 (1996)

    Article  Google Scholar 

  37. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J. Biomech. 12, 423–436 (1979)

    Article  Google Scholar 

  38. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  39. Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. ASME J. Biomech. Eng. 120, 504–517 (1998)

    Article  Google Scholar 

  40. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    Google Scholar 

  41. Martins, P., Peña, E., Calvo, B., Doblaré, M., Mascarenhas, T., Jorge, R.N., Ferreira, A.: Prediction of nonlinear elastic behavior of vaginal tissue: experimental results and model formulation. Comp. Meth. Biomech. Biomed. Eng. 13(3), 327–337 (2010, in press)

    Google Scholar 

  42. Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transverselly isotropic elasto-damage constitutive model for the periodontal ligament. Comp. Meth. Biomech. Biomed. Eng. 6, 329–336 (2003)

    Article  Google Scholar 

  43. Ogden, R.W.: Large deformation isotropic elasticity II: on the correlation of theory and experiment for compresible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  44. Peña, E.: Evolution equations for the internal damage variables for soft biological fibred tissues. Mech. Res. Commun. 38, 610–615 (2011)

    Article  MATH  Google Scholar 

  45. Peña, E.: A rate dependent directional damage model for fibred materials. Application to soft biological tissues. Comp. Mech. 48, 407–420 (2011)

    MATH  Google Scholar 

  46. Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. C. Biomech. 20, 636–644 (2005)

    Article  Google Scholar 

  47. Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006)

    Article  Google Scholar 

  48. Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On the numerical treatment of initial strains in soft biological tissues. Int. J. Numer. Meth. Eng. 68, 836–860 (2006)

    Article  MATH  Google Scholar 

  49. Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: An anisotropic visco-hyperelastic model for ligaments at finite strains: formulation and computational aspects. Int. J. Solids Struct. 44, 760–778 (2007)

    Article  MATH  Google Scholar 

  50. Peña, E., del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modeling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Method Eng. 14(1), 47–91 (2007)

    Google Scholar 

  51. Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Comput. Biol. Med. 38, 69–81 (2008)

    Article  Google Scholar 

  52. Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On finite strain damage of viscoelastic fibred materials: application to soft biological tissues. Int. J. Numer. Meth. Eng. 74, 1198–1218 (2008)

    Article  MATH  Google Scholar 

  53. Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)

    Article  MATH  Google Scholar 

  54. Peña, E., Alastrue, V., Laborda, A., Martínez, M.A., Doblare, M.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech. 43, 984–989 (2010)

    Article  Google Scholar 

  55. Pinsky, P.M., Datye, V.: A microstructurally-based finite element model of the incised human cornea. J. Biomech. 10, 907–922 (1991)

    Article  Google Scholar 

  56. Pioletti, D.P., Rakotomanana, L., Leyvraz, P.F., Benvenuti, J.F.: Finite element model of the anterior cruciate ligament. Comp. Meth. Biomech. Biomed. Eng. (1997)

    Google Scholar 

  57. Provenzano, P.P., Heisey, D., Hayashi, K., Lakes, R., Vanderby, R.: Subfailure damage in ligament: a structural and cellular evaluation. J. Appl. Physiol 92, 362–371 (2002)

    Google Scholar 

  58. Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J. Biomech. Eng. 120, 162–170 (1998)

    Article  Google Scholar 

  59. Rachev, A., Hayashi, K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27(4), 459–468 (1999)

    Article  Google Scholar 

  60. Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 564–886 (2006)

    Article  Google Scholar 

  61. Rodríguez, J.F., Alastrue, V., Doblaré, M.: Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput. Methods Appl. Mech. Eng. 197, 946–958 (2008)

    Article  MATH  Google Scholar 

  62. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  63. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  64. Simo, J.C., Ju, J.W.: Strain- and stress-based continuum damage models. I. Formulation. Int. J. Solids Struct. 23, 821–840 (1987)

    Article  MATH  Google Scholar 

  65. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  66. Spencer, A.J.M.: Theory of Invariants. In: Continuum Physics, pp. 239–253. Academic, New York (1971)

    Google Scholar 

  67. Viidik, A.: Structure and function of normal and healing tendons and ligaments. In: Mow, V.C., Ratchiffe, A., Woo, S.L.Y. (eds) Biomecanics of Diarthorial Joints. Springer, New York (1990)

    Google Scholar 

  68. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  69. Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943–950 (1996)

    Article  Google Scholar 

  70. Woo, S.L.Y., Peterson, R.H., Ohland, K.J., Sites, T.J., Danto, M.I.: The effects of strain rate on the properties of the medial collateral ligament in skeletally inmatura and mature rabbits: a biomechanical and histological study. J. Orthopaed. Res. 8, 712–721 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge research support from the Spanish Ministry of Science and Technology through the research projects DPI2011-27939-C02-01, DPI2011-15551-E and DPI2010-20746-C03-01, and the CIBER-BBN initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefanía Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calvo, B., Peña, E. (2014). Fundamental Aspects in Modelling the Constitutive Behaviour of Fibered Soft Tissues. In: Parés, C., Vázquez, C., Coquel, F. (eds) Advances in Numerical Simulation in Physics and Engineering. SEMA SIMAI Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-02839-2_1

Download citation

Publish with us

Policies and ethics