Skip to main content

Numerical Modeling and Research of 3D Turbine Stage

  • Chapter
  • First Online:
Engineering Applications of Computational Fluid Dynamics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 44))

Abstract

The current study deals with a methodology for numerical modeling, research and analysis of flow parameters distribution in a 3D turbine stage with twisted rotor blade. The object under consideration is the forth stage of one of two low pressure turbine aggregates, working in Kozloduy Nuclear Power Plant, Bulgaria. A logical sequence for modeling of 3D viscous, compressible and turbulent flow in turbine stage, with moving twisted rotor blade, is accessed, as a result of the performed research works. Approaches how to attain high quality mesh grid and overcome convergence problems were established. The elaborated methodology was applied for research of boundary layer development; radial gap effects on flow aerodynamics in turbine stages; erosion effects over turbine blades working in wet steam; roughness influence over turbine blade surface, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xayтopн, У.P.: „Aэpoдинaмикa тypбин и кoмпpeccopoв”, Изд. „Maшинocтpoeниe”, M., 1968 (in Russian)

    Google Scholar 

  2. GRAPE 2-D Grid Generator for Turbomachinery: User’s manual and documentation, Version 104, 24 Oct 1997

    Google Scholar 

  3. Fridh, J.: Experience from through-flow calculations with SCAM-T for a two-stage axial turbine-the streamline curvature method-version 1. Technical report January 2002 SNEA project P12457-2 (2002)

    Google Scholar 

  4. Sonoda, T., Arima, T., Olhofer, M., et al.: A study of advanced high-load transonic turbine airfoils. J. Turbomach. 128(4), 650–657 (2006)

    Google Scholar 

  5. Wilkinson, D.H.: A numerical solution of the analysis and design problems for the flow past one or more aerofoils or cascades. Aeronautical Research Council Report and Memorandum, No 3545 (1968)

    Google Scholar 

  6. Wilkinson, D.H.: Calculation of blade-to-blade flow in a turbomachine by streamline curvature. Aeronautical Research Council Report and Memorandum, No 3704 (1972)

    Google Scholar 

  7. Wilkinson, D.H.: Stability, convergence and accuracy of two-dimensional streamline curvature method using quasi-orthogonals. IMechE Thermodynamics and Fluid Dynamics Convention 1970, Paper 35

    Google Scholar 

  8. Киpиллoв, A.И., Pиc, B.B., Cмиpнoв, E.M., Xoдaк: „Pacчeт тpexмepныx тypбyлeнтныx тeчeний в тypбoмaшинax нa ocнoвe peшeния пapaбoлизoвaнныx ypaвнeний Haвыe Cтoкca”, A.E., 1987г (in Russian)

    Google Scholar 

  9. Novak, R.A., et al.: A nearly three-dimensional interablade computing system for turbomachinery. ASME Papers 76-FE-19 and 76-FE-20, Parts I and II (1976)

    Google Scholar 

  10. Cиpoткин, Я.A., Cтeпaнoв, Г.Ю.: „Уcтaнoвившeecя ocecиммeтpичнoe виxpeвoe тeчeниe нeвязкoй жидкocти в мнoгocтyпeнчaтыx тypбoмaшинax”, Изв. AH CCCP, MЖГ № 6, 1981г (in Russian)

    Google Scholar 

  11. Kachel, C.E., Denton, J.D.: Experimental and numerical investigation of the unsteady surface pressure in a three stage model of an axial high pressure turbine. J. Turbomach. 128(2), 261–272 (2006)

    Google Scholar 

  12. Oksuz, O.: Aerodynamic optimization of turbine cascades using an euler/boundary-layer solver coupled genetic algorithm. Doctoral thesis (2002)

    Google Scholar 

  13. Schaffarczyk, A.P., Pawlak, M., Richert, F.: New model for calculating intensities of turbulence in the wake of wind-turbines. DEWEK Lecturers Notes (2001)

    Google Scholar 

  14. Oyama, A., Liou, M.-S., Obayashi, S.: Transonic axial-flow blade shape optimization using evolutionary algorithm and three-dimensional Navier-Stokes solver. AIAA 2002-5642 (2002)

    Google Scholar 

  15. Zobeiri, A., Kueny, J.-L., Farhat, M., Avellan, F.: Pumpturbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. In: 23rd IAHR Symposium—Yokohama, Oct 2006, vol. 1, Issue 10 (2006)

    Google Scholar 

  16. Holley, B.M., Becz, S., Langston, L.S.: Measurement and calculation of turbine cascade endwall pressure and shear stress. J. Turbomach. 128, 232–239 (2006)

    Google Scholar 

  17. Pasinato, H.D., Kyle, D., et al.: Assessment of Reynolds-averaged turbulence models for prediction of the flow and heat transfer in an inlet vane-endwall passage. J. Fluids Eng. ASME 126, 305–315 (2004)

    Google Scholar 

  18. Bonfiglioli, A., Sergio Campobasso, M.: Computing three-dimensional turbomachinery flows with an implicit fluctuation splitting scheme. In: Conference on Modeling Fluid Flow (CMFF’06), The 13th International Conference on Fluid Flow Technologies Budapest, Hungary, 6–9 September 2006

    Google Scholar 

  19. Biswas, D.: Studies on unsteady laminar-turbulent transition caused by wakes in turbine rotor-stator interaction based on a hybrid-LES model. In: 35th AIAA Fluid Dynamics Conference and Exhibit, 6–9 June 2005. Toronto, Ontario Canada, AIAA 2005-4770 (2005)

    Google Scholar 

  20. Doi, H., Alonso, J.J.: Fluid/structure coupled aeroelastic computations for transonic flows in turbomachinery. In: Proceedings of the ASME Turbo Expo 2002, 3–6 June 2002. Amsterdam, The Netherlands (2002)

    Google Scholar 

  21. Yang, H., Nuernberger, D., Kersken, H.-P.: Toward excellence in turbomachinery computational fluid dynamics: a hybrid structured-unstructured reynolds averaged Navier-Stokes solver. J. Turbomach. 128, 390–402 (2006)

    Article  Google Scholar 

  22. Yan, J., Gregory-Smith, D.: CFD Simulations of 3-Dimensional flow in turbomachinery applications. Presented at Turbomachinery Flow Prediction VIII ERCOFTAC WorkshopLac Clusaz, France, March 2000

    Google Scholar 

  23. Gier, J., Stubert, B., Brouillet, B., de Vito, L.: Interaction of shroud leakage flow and main flow in a three-stage LP turbine. In: Proceedings of the ASME Turbo Expo 2002, 3–6 June 2002. Amsterdam, The Netherlands (2002)

    Google Scholar 

  24. Laumert, B., Matensson, H., Fransson, T.H.: Investigation of the flowfield in the transonic VKI BRITE EURAM turbine stage with 3D steady and unsteady N-S computations. ASME Paper, 2000-GT-0433

    Google Scholar 

  25. Ameri, A.A.: Heat transfer and flow on the blade tip of a gas turbine equipped with a mean-camberline strip. NASA/CR-2001-210764 2001-GT-0156 (2001)

    Google Scholar 

  26. Anziam, J., Wu, Y.H., Wiwatanapatapheey, B., et al.: An exponentially fitted enthalpy control volume algorithm for coupled fluid flow and heat transfer. ANZIAM J. 42(E), C1580, C1598 (2000). http://anziamj.austms.org.au/V42/CTAC99/Wu2

  27. Craft, T.J., Launder, B.E., Suga, K.: A non-linear eddy-viscosity model including sensitivity to stress anisotropy. In: Proceedings of the Tenth Symposium on Turbulent Shear Flows, pp. 23-19–23-24, 173 (1995)

    Google Scholar 

  28. Innovative Turbulence Modeling: SST Model in ANSYS-CFX: Technical brief, ANSYS-CFX (2005)

    Google Scholar 

  29. Uzol, O., Brzozowski, D., Chow, Y.C., et al.: A database of PIV measurements within a turbomachinery stage and sample comparisons with unsteady RANS. J. Turbul. 8(10), 1–20 (2007)

    Google Scholar 

  30. Iahr, W.G., Ruprecht, A., Bauer, C., et al.: The behaviour of hydraulic machinery under steady oscillatory conditions. Unsteady forces on the blading of an axial turbine caused by stator-rotor interaction. http://www.ihs.uni-stuttgard.de

  31. Jaime Fernandez-Castaneda, S.A., Corral, R.: Surface mesh generation by means of Steiner triangulations. Industria de Turbo Propulsores. AIAA J. 39(1), 176–180 (2001)

    Google Scholar 

  32. Hughes, T.J.R., France, L.P., Hulbert, G.M.: A new finite element formulation for fluid dynamics the Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MATH  Google Scholar 

  33. Buntić Ogor, I., Dietze, S., Ruprecht, A.: Numerical simulation of the flow in turbine-99 draft tube. In: Proceedings of the Third IAHR/ERCOFTAC Workshop on Draft Tube Flow, Porjus, Sweden, 8–9 Dec 2005

    Google Scholar 

  34. Xie, D., Yu, X., Li, W., et al.: Numerical simulation of water droplets deposition on the last-stage stationary blade of steam turbine. Energy Power Eng. 2, 248–253 (2010). doi:10.4236/epe.2010.24036, http://www.SciRP.org/journal/epe. Accessed Nov 2010

  35. Menter, F.R.: Zonal two equation k-w turbulence models for aerodynamic flows. In: AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July 1993

    Google Scholar 

  36. GAMBIT 2 Tutorial Guide, December 2001

    Google Scholar 

  37. Yao, J., Jameson, A., Alonso, J.J., et al.: Development and validation of a massively parallel flow solver for turbomachinery flows. J. Propul. Power 17(3), 659–668 (2001)

    Google Scholar 

  38. Fernández Oro, J., Argüelles Díaz, K., Santolaria Morros, C., et al.: Unsteady flow analysis of the stator-rotor interactions in an axial flow fan. In: Proceedings of the ASME FEDSM’03 4th ASME_JSME Joint Fluids Engineering Conference Honolulu, 6–10 July 2003. Hawaii, USA, FEDSM 2003-4 5394 (2003)

    Google Scholar 

  39. Huitao, Y.: Investigations of flow and film cooling on turbine blade edge regions. A dissertation by Huitao Yang, August 2006, 46 (2006)

    Google Scholar 

  40. Song, B., Ng, W.F.: Performance and flow characteristics of an optimised supercritical compressor stator cascade. J. Turbomach. 128 (2006)

    Google Scholar 

  41. Lefebvre, M., Arts, T.: Numerical aero-thermal predictions of laminar/turbulent flows in a two-dimensional high pressure turbine linear cascade. http://euroturbo.org

  42. Takemitsu, N.: An analytical study of the standard k–ε model. J. Fluid Mech. 112(6), 192–198 (1990)

    Google Scholar 

  43. Menter, F.: Turbulence modeling for turbomachinery applications. QNET-CFD Meeting, Lucerne (2002)

    Google Scholar 

  44. Lapwort, L., Shahpar, S., Neittaanmäki, P., Rossi, T., Korotov, S., O˜nate, E., Périaux, J., Knörzer, D. (eds.): Jyvakyl “Design of Gas Turbine Engines Using CFD”. In: European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 24–28 July 2004

    Google Scholar 

  45. Lampart, P., Gardzilewicz, A., Yershov, S., et al.: Investigations of flow characteristics of an HP turbine stage including the effect of tip leakage and windage flows using a 3D Navier-Stokes solver with source/sink-type boundary conditions. In: Proceedings of the 2000 International Joint Power Generation Conference, 23–26 July 2000. Miami Beach, Florida, IJPGC2000-15004 (2000)

    Google Scholar 

  46. Ilieva, G.I.: Modelling, research and analysis of 3D real flow in turbine stages with complex geometry. Dissertation thesis, Technical University-Varna (2009)

    Google Scholar 

  47. Ilieva, G.I., Iosifov R.D.: Geometry modeling features for 3D turbine cascade with twisted rotor blade in GAMBIT. Acta Univ. Pontica Euxinus 2(5), 7–12 (2005). ISSN:1312-1669

    Google Scholar 

  48. Sakai, N., Harada, T., Imai, J.: Numerical study of partial admission stages in steam turbine. JSME 2(49), 212–217 (2006)

    Google Scholar 

  49. Yershov, S.V., Rusanov, A.: Numerical simulation of 3D viscous turbomachinary flow with high-resolution ENO scheme and modern turbulence model. CFD for Turbomachinery Applications 1–3 Sept 2001, Gdansk Poland (2001)

    Google Scholar 

  50. Acton, E., Cargill M.: Non-reflecting boundary conditions for computations of unsteady turbomachinery flows. In: Proceedings of the 4th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines and Propellers, pp. 211–228. http://www.springerlink.com

  51. Brost, V., Ruprecht, A., Maihöfer, M.: Rotor-stator interactions in an axial turbine, a comparison of transient and steady state frozen rotor simulations. http://www.ihs.uni-stuttgart.de

  52. Hohn, W., Gombert, R., Kraus, A.: Unsteady aerodynamical blade row interaction in a new multistage research turbine. Part 2: numerical investigation. In: Proceedings of the IGTI’01 ASME TURBO EXPO 2001, 04–07 June 2001. New Orleans, Louisiana, USA (2001)

    Google Scholar 

  53. Sleiman, M.: Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods. A thesis in the Department of Mechanical Engineering, Mohamad Sleiman (1999)

    Google Scholar 

  54. Paй, M.M.: „Moдeлиpoвaниe взaимoдeйcтвия poтopa и cтaтopa тypбины нa ocнoвe peшeния тpexмepныx ypaвнeний Haвьe-Cтoкca. Чacть 1. Meтoд pacчeтa”, Aэpoкocмичecкaя тexникa № 3, 1990 (Journal of Propulsion and Power 1989 №3 pp. 305–311) (in Russian)

    Google Scholar 

  55. Rai, M.M.: A conservative treatment of zonal boundaries for Euler equation calculations. J. Comput. Phys. 62, 472–503 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rai, M.M.: An implicit conservative zonal boundary scheme for Euler equation calculations. Comput. Fluids 14(3), 295–319 (1986)

    Article  Google Scholar 

  57. Rai, M.M.: A relaxation approach to patched grid calculations with the Euler equations. J. Comput. Phys. 66, 99–131 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  58. Rai, M.M.: Navier-Stokes simulations rotor-stator interaction using patched and overlaid grids. J. Propul. Power 3, 387–396 (1987)

    Article  Google Scholar 

  59. Gier, J., Ardey, S., Eymann, S., Reinmöler, U., Niehuis, R.: Improving 3D flow characteristics in a multistage LP turbine by means of endwall contouring and airflow design modification Part 2: numerical simulation and analysis. In: Proceedings of the ASME TURBO EXPO 2002, 3–6 June 2002. Amsterdam, The Netherlands, GT-2002-30353

    Google Scholar 

  60. Laumert, B., Mårtensson, H., Fransson, T.H.: Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage. Part II: analytical description and quantification. ASME J. Turbomach. 124, 419–428 (2002)

    Article  Google Scholar 

  61. Laumert, B., Mårtensson, H., Fransson, T.H.: Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage. Part I: phenomenological identification and classification. ASME J. Turbomach. 124, 410–418 (2002)

    Article  Google Scholar 

  62. FLUENT 5 User’s Guide, Volume 2, Fluent Incorporated, July 1998

    Google Scholar 

  63. GAMBIT 2 User’s Guide, December 2001

    Google Scholar 

  64. Mumic, F.: Computational analysis of heat transfer and fluid flow in the gap between a turbine blade tip and the casing. http://www.vok.Ith.se

  65. Ilieva, G.I.: Numerical modeling and investigation of 3D real flow in turbine stage with tip clearance—special features and approaches, convergence of numerical procedure. Part I. In: Proceedings of the TU-VARNA 2008 (2008). ISSN:1311-896X

    Google Scholar 

  66. Ilieva, G.I.: Numerical modeling and investigation of 3D real flow in turbine stage with tip clearance—special features and approaches, convergence of numerical procedure. Part II. Numerical results. In: Proceedings of the TU-VARNA 2008 (2008). ISSN:1311-896X

    Google Scholar 

  67. Villalpando, F., Reggio, M., Ilinca, A.: Assessment of turbulence models for flow simulation around a wind turbine airfoil. Model. Simul. Eng. 2011(Article ID 714146), 8p (2011). http://dx.doi.org/10.1155/2011/714146

  68. Jošt, D., et al.: Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models. IOP Conf. Ser. Earth Environ. Sci. 15, 062016 (2012). doi:10.1088/1755-1315/15/6/062016

  69. Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  70. Cleak, J.G.E., Gregory-Smith, D.G.: Turbulence modeling for secondary flow prediction in a turbine cascade. J. Turbomach. 114(3), 590–598 (2008) (Jul 01, 1992) (9pp). doi:10.1115/1.2929183History. Accessed 06 Feb 1991; Online 09 June 2008

  71. Hamed, A.A., Tabakoff, W., Rivir, R.B., et al.: Turbine blade surface deterioration by erosion. J. Turbomach. 127, 445 (2005)

    Google Scholar 

  72. White, L.C.: Modern Power Station Practice. British Electricity International, Pergamon Press, London, 1–659 (1992)

    Google Scholar 

  73. Wu, C.H., Beck, P.: A general theory of three-dimantional flow in subsonic turbomachines of axial-, radial-, and mixed-flow types. National Advisory Committee for Aeronautics, Technical Note, no. 2604, Washington D.C.(1952)

    Google Scholar 

Download references

Acknowledgments

The research work, presented herein, is a   small part of dissertation thesis, accomplished in Technical University-Varna, Bulgaria. Specific codes, elaborated for the purposes of flow analysis are not shown and discussed here. I am gratefull to my supervisor Prof. Dr. Rumen Yossifov for his patience, support and precious ideas during my study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Ilieva Ilieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ilieva, G.I. (2015). Numerical Modeling and Research of 3D Turbine Stage. In: Shaari, K., Awang, M. (eds) Engineering Applications of Computational Fluid Dynamics. Advanced Structured Materials, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-02836-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02836-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02835-4

  • Online ISBN: 978-3-319-02836-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics