Skip to main content

Optimization of Oscillating Systems

  • Chapter
  • First Online:
  • 1031 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Currently, there are following main directions in which measuring generators can be improved: to decrease total harmonic distortion, to increase accuracy of setting and stability of output voltage amplitudes and frequency, to reduce transient time for establishment of stationary oscillations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, we do not take into account other parameters, except for the OpAmp gain, such as common-mode rejection ratio, input and output resistances, etc.

  2. 2.

    See Sect. 7.2 for more detailed information of how this equation is derived.

  3. 3.

    The optimal values a and b are calculated using the function Minerr in the software Mathcad.

  4. 4.

    That is the transfer ratios without allowance for the amplifier gain.

  5. 5.

    For example, the amplifier UA741.

  6. 6.

    Recall that much the same relationships of the parameters a = b = 1.5 correspond to minimum values of nonlinear distortions.

  7. 7.

    In this expression that describes the circuit in the block diagram shown in Fig. 6.15b, the common term in the numerator is the summand \( \left( { - 1} \right)^{j + r}\, {\text{Wc}}\left( s \right){\text{D}}_{\,j\,r} ,\;j = \overline{1,r - 1} . \)

  8. 8.

    The equation \( \mathop x\limits^{..} + x = \delta \left( {t - t_{0} } \right)f_{1} \left( {t_{0} } \right) \) is fulfilled at the point of crossing between the circle and the switching line. Although the right side of the equation is equal to the product of ∞ by 0, the jump does not occur. This is explained by the fact that this product is equal to zero since the area of the product (property of multiplying the δ-function by the function f) is equal to zero as well. From a physical point of view, it means that the pulse correcting the oscillation amplitude is equal to zero at this moment.

  9. 9.

    The circuit based on elements S1, S2, K1, K2, C3 and C4 are often called the strobe detector.

References

  1. Kriksunov, V.G.: Resistance-Capacitance Sine-Wave Generators. Gostekhizdat, Kiev (1958). (in Russian)

    Google Scholar 

  2. Vannerson, E., Smit, К.C.: A low-distortion oscillator with fast amplitude stabilization. J. Electron. 39(4), 465–472 (1975)

    Article  Google Scholar 

  3. Rybin, Yu.K., Litvak, E.S.: A stabilized harmonic rc oscillator with low nonlinear distortions. Izvestiya vuzov SSSR. Series: Inst. Eng. 11, 57–60 (1980) (in Russian)

    Google Scholar 

  4. Rybin, Yu.K., Budeykin, V.P., Chufistov, V.I.: RC Oscillator with low-level nonlinear distortions. Izmeritelnaya Tekh. 4, 39–41 (1984) (in Russian)

    Google Scholar 

  5. Function Generator/RC Oscillator (2011). Accessed 02 Dec 2011)

    Google Scholar 

  6. Roytman, M.S., Rybin, Yu.K., Sergeev, V.M., et al.: The programmable source of calibrated ac voltages f7090. Summary report of the all-union meeting “high-precision measurement of electrical values of ac, voltage, power, energy and phase angle”. Leningrad, p. 32, 33 (1984) (in Russian)

    Google Scholar 

  7. Rybin, Yu.K., Sarychev, S.V., Svinolupov, Ju.G., Sushchentsev, A.N.: Pribory i Tekhnika Eksperimenta 2, 240, 241 (1983) (in Russian)

    Google Scholar 

  8. Horsky, J.: Nizkofrekvencnu generatory s malym nelinearnim zkvelenim. Sdelovaci Tech. 12, 457–460 (1978)

    Google Scholar 

  9. RC-Oscillator, 0,002% Distortion model VP-7220B. Electronic Measuring Instruments Catalogue. Yokohama, p. 50 (1976–1977)

    Google Scholar 

  10. CR-Oscillator, Model CR—131. NF electronic instruments, short form catalog. Yokohama, p. 2 (1977)

    Google Scholar 

  11. Oscillators Model 239A.: Catalogue Hewlett–Packard Co., p. 312 (1983)

    Google Scholar 

  12. Low-distortion audio signal Generator. Model 149ba/Teleradio Electronics. Wireless World, Vol. 89, Jun, N 1569, p. 81 (1983)

    Google Scholar 

  13. Model 4500/Krohn-Hite Corp. Radio Electron. 54(10), 46–48 (1983)

    Google Scholar 

  14. Oscillator Model MCR–4031/Meguro Electronics Co. JEE 19(189), 124 (1982)

    Google Scholar 

  15. Oscillator Model 590R/Shibasoku Co. Ltd. JEE 16(156), 82 (1979)

    Google Scholar 

  16. Roytman, M.S.: The theory of amplitude-stable low-frequency oscillators with low nonlinear distortions. Izvestiya TPI. 298, 3–17 (1974)

    Google Scholar 

  17. Grundschaltungen der Elektronik. Der RC-oszillator, Teil 2. Funkschau. 12(23), 81–84 (1982)

    Google Scholar 

  18. Voeykov, D.D.: Design of bridge-type phasing circuits of RC oscillators. Elektrosvyaz 7, 72–75 (1977)

    Google Scholar 

  19. Murooka, M.: LF—Oscillators achieve low-distortion and stability. JEE 126, 29–31 (1977)

    Google Scholar 

  20. Tietze, U., Schenk, C.H.: Semiconductor Circuit Design: Guidebook: Translated from German. Mir, Moscow (2009) (in Russian)

    Google Scholar 

  21. Pisarkiewicz T., Zamarski, A.: Generator RC drgan sinusoidalnych bardzo matej czestotliwosci. Elektronika 9, 72 (1976)

    Google Scholar 

  22. Yakovlev, V.N.: Oscillators with multiple-loop feedback. Svyaz, Moscow (1973). (in Russian)

    Google Scholar 

  23. Kisel, V.A., Ryzhov, V.A.: Synthesis of RC oscillators with a single controlled resistor. Radiotekhnika 7, 89–91 (1983)

    Google Scholar 

  24. Kallyugavaradan, S.: Single-resistance-control-led rc-oscillator using a single operational amplifier. Int. J. Electron. 50(2), 153–155 (1981)

    Article  Google Scholar 

  25. Sidorowicz, R.S.: Some novel RC-oscillators for radio frequencies. Electron. Eng. 9(9), 560–564 (1967)

    Google Scholar 

  26. Low-Frequency Sine Wave Oscillator. Express-inform. Series: Control and Measuring Equipment. 8(8), 19–22 (1978) (in Russian)

    Google Scholar 

  27. Channing, D.A., Esters, B.M.: GTE Automatic Electric Laboratories, Inc. Pat. No. 3806832 US. R. C. Oscillator. U. S. Cl. 331/135; Int. Cl. H03b 3/02. Filed Dec. 21, 1972; issued Apr. 23 1974

    Google Scholar 

  28. Koetter, G.: NF-Generator mit Niedrigem Klirrfaktor. Funkschau 8, 347, 348 (1978)

    Google Scholar 

  29. Harald E.W. Bode.: Pat. No. 4145670 US. Multiphase signal oscillator. U. S. Cl. 331/135; Int. Cl. H03b 3/24. Filed. Jul. 5, 1977; issued 20 Mar. 1979

    Google Scholar 

  30. Kozlov, G.G., Shapiro, M.I.: Sine-wave RC self-oscillators based on active filters. Izvestiya vuzov SSSR. Series: Instr. Eng. 2, 85–90 (1974)

    Google Scholar 

  31. Eugene V. Ochs.: Voltage peak sampled amplitude controlled phase shift oscillator. Patent No. 3800241 US. . John Fluke Mfg. Co.,Inc. U. S. Cl. 331/45; Int. Cl. H03b 3/02. Filed Sept. 20, 1972; issued 26 Mar. 1974

    Google Scholar 

  32. Richman, P.L., Towner, W.T., Nordahl, J.G.: Precision oscillator. Pat. No. 3396347 US. Weston Instruments, Inc. U. S. Cl. 331/136; Int. Cl. H03b 3/02. Filed Jan. 18, 1967; issued 6 Aug. 1968

    Google Scholar 

  33. Designing of an inexpensive high-precision sine wave oscillator with low distortion level. Express-inform. Series: Control and Measuring Equipment 9, 21–31, (1979)

    Google Scholar 

  34. Rybin, Yu.K., Roytman, M.S., Litvak, E.S.: Selg-Generator. (USSR), Patent No. 2107282/18–09. Copyright Certificate No. 664273 USSR, MKI 5/00. The application filed on 24.02.75; published on 25.05.79, Bulletin No. 19

    Google Scholar 

  35. Abuelma′ atti M.T.: Identification of a class of two CFOA—based sinusoidal RC oscillators. Analog Integr. Circuits Signal Process. 65, 419–428

    Google Scholar 

  36. Abuelma′ atti M. T., Al-Shahrani, S.M.: Novel CFOA—based sinusoidal oscillators. Int. J. Electron. 85, 437–441 (1998)

    Google Scholar 

  37. von Wangenheim, Lutz: Active Filters and Oscillators. Tekhnosfera, Moscow (2010). (in Russian)

    Google Scholar 

  38. Soliman, A.M.: Current feedback operational amplifier based oscillators. Analog Integr. Circuits Signal Process. 23, 45–55 (2000)

    Article  Google Scholar 

  39. Rybin, Yu.K.: Synthesis of Sine Wave Oscillations with Pulse Stabilization of Amplitude. Radiotekhnika i Elektronika. 29(9), 1764–1771 (1984) (in Russian)

    Google Scholar 

  40. Rybin, Yu.K., Groshev B.L.: Synthesis of sine-wave oscillators with time-optimized transient processes. Radiotekhnika i Elektronika 32(5), 1001–1007 (1987) (in Russian)

    Google Scholar 

  41. Pontryagin, L.S., Boltyanskiy, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Mathematical Theory of Optimal Processes/Principle of Maximum. Nauka, Moscow (1983). (in Russian)

    Google Scholar 

  42. Rybin, Yu.K., Osipov, A.V.: Analysis of Transient Processes in Sine-Wave Generators. Radiotekhnika i Elektronika 28(12), 2409–2413 (1983) (in Russian)

    Google Scholar 

  43. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillations. Nauka, Moscow (1981). (in Russian)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy K. Rybin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rybin, Y.K. (2014). Optimization of Oscillating Systems. In: Measuring Signal Generators. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02833-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02833-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02832-3

  • Online ISBN: 978-3-319-02833-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics