Skip to main content

Multi–command Chest Tactile Brain Computer Interface for Small Vehicle Robot Navigation

  • Conference paper
Brain and Health Informatics (BHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8211))

Included in the following conference series:

Abstract

The presented study explores the extent to which tactile stimuli delivered to five chest positions of a healthy user can serve as a platform for a brain computer interface (BCI) that could be used in an interactive application such as robotic vehicle operation. The five chest locations are used to evoke tactile brain potential responses, thus defining a tactile brain computer interface (tBCI). Experimental results with five subjects performing online tBCI provide a validation of the chest location tBCI paradigm, while the feasibility of the concept is illuminated through information-transfer rates. Additionally an offline classification improvement with a linear SVM classifier is presented through the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brouwer, A.M., Van Erp, J.B.F.: A tactile P300 brain-computer interface. Frontiers in Neuroscience 4(19) (2010)

    Google Scholar 

  2. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  3. Halder, S., Rea, M., Andreoni, R., Nijboer, F., Hammer, E., Kleih, S., Birbaumer, N., Kübler, A.: An auditory oddball brain–computer interface for binary choices. Clinical Neurophysiology 121(4), 516–523 (2010)

    Article  Google Scholar 

  4. Max 6 (2012), http://cycling74.com/

  5. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience 10(5), 345–359 (2009)

    Article  Google Scholar 

  6. Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34(4), 1600–1611 (2007)

    Article  Google Scholar 

  7. Kaufmann, T., Holz, E.M., Kübler, A.: Comparison of tactile, auditory and visual modality for brain-computer interface use: A case study with a patient in the locked-in state. Frontiers in Neuroscience 7(129) (2013)

    Google Scholar 

  8. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the P300 speller. Journal of Neural Engineering 3(4), 299 (2006)

    Article  Google Scholar 

  9. Mori, H., Matsumoto, Y., Struzik, Z.R., Mori, K., Makino, S., Mandic, D., Rutkowski, T.M.: Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the Fifth International Brain-Computer Interface Meeting 2013, Asilomar Conference Center, Pacific Grove, CA USA, June 3-7. Graz University of Technology Publishing House, Austria (2013), Article ID: 095

    Google Scholar 

  10. Mori, H., Matsumoto, Y., Kryssanov, V., Cooper, E., Ogawa, H., Makino, S., Struzik, Z., Rutkowski, T.M.: Multi-command tactile brain computer interface: A feasibility study. In: Oakley, I., Brewster, S. (eds.) HAID 2013. LNCS, vol. 7989, pp. 50–59. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Mori, H., Matsumoto, Y., Makino, S., Kryssanov, V., Rutkowski, T.M.: Vibrotactile stimulus frequency optimization for the haptic BCI prototype. In: Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, November 20-24, pp. 2150–2153 (2012)

    Google Scholar 

  12. Muller-Putz, G., Scherer, R., Neuper, C., Pfurtscheller, G.: Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(1), 30–37 (2006)

    Article  Google Scholar 

  13. Niedermeyer, E., Da Silva, F.L. (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins (2004)

    Google Scholar 

  14. Plum, F., Posner, J.B.: The Diagnosis of Stupor and Coma. FA Davis, Philadelphia (1966)

    Google Scholar 

  15. Rutkowski, T.M., Cichocki, A., Mandic, D.P.: Spatial auditory paradigms for brain computer/machine interfacing. In: Proceedings of the International Workshop International Workshop on the Principles and Applications of Spatial Hearing 2009 (IWPASH 2009), Miyagi-Zao Royal Hotel, Sendai, November 11-13, p. 5 (2009)

    Google Scholar 

  16. Schalk, G., Mellinger, J.: A Practical Guide to Brain–Computer Interfacing with BCI2000. Springer-Verlag London Limited (2010)

    Google Scholar 

  17. Schreuder, M., Blankertz, B., Tangermann, M.: A new auditory multi-class brain-computer interface paradigm: Spatial hearing as an informative cue. PLoS ONE 5(4), e9813 (2010)

    Google Scholar 

  18. Stocks, C.R.M.: Py3GUI (2011), https://github.com/collinstocks/py3gui

  19. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Acedemic Press (2009)

    Google Scholar 

  20. van der Waal, M., Severens, M., Geuze, J., Desain, P.: Introducing the tactile speller: an ERP-based brain–computer interface for communication. Journal of Neural Engineering 9(4), 045002 (2012)

    Google Scholar 

  21. Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Mori, H., Makino, S., Rutkowski, T.M. (2013). Multi–command Chest Tactile Brain Computer Interface for Small Vehicle Robot Navigation. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02753-1_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02752-4

  • Online ISBN: 978-3-319-02753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics