Skip to main content

The Role of Correlated Inhibitory Cell Firing

  • Conference paper
Brain and Health Informatics (BHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8211))

Included in the following conference series:

  • 2795 Accesses

Abstract

Maturation of γ-aminobutyric acid (GABA) function within the visual cortex is known to be involved in ocular dominance (OD) plasticity. However, only the circuits mediated by specific GABAA receptors can induce OD plasticity, implying a role of local GABA functions in this process. Here, we simulated the dynamics of synaptic population by spike-timing-dependent plasticity (STDP) to study the effects of local inhibitory functions on plasticity. Various forms of inhibitory pathways, such as horizontal, backward, and independent inhibition, were examined. We specifically investigated the activity-dependent competition between groups of inputs, which is required for the induction of experience-dependent plasticity. We show that the temporal correlation between excitatory and inhibitory inputs produced by horizontal inhibition facilitates competition. Conversely, the correlation between inhibitory inputs and postsynaptic activity through feedback inhibition suppresses competition. Our results may suggest that the distinct local GABA circuits can differently regulate the occurrence and level of visual plasticity by controlling the synaptic competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hensch, K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S., Kash, S.F.: Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998)

    Article  Google Scholar 

  2. Fagiolini, M., Hensch, T.K.: Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 (2000)

    Article  Google Scholar 

  3. Hanover, J.L., Huang, Z.J., Tonegawa, S., Stryker, M.P.: Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci. 19, RC40 (1999)

    Google Scholar 

  4. Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L., Tonegawa, S.: BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999)

    Article  Google Scholar 

  5. Fagiolini, M., Fritschy, J.M., Low, K., Mohler, H., Rudolph, U., Hensch, T.K.: Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 (2004)

    Article  Google Scholar 

  6. Hensch, T.K.: Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005)

    Article  Google Scholar 

  7. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  8. Kubota, S., Kitajima, T.: Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity. J. Comput. Neurosci. 28, 347–359 (2010)

    Article  Google Scholar 

  9. Kuhlman, S.J., Lu, J., Lazarus, M.S., Huang, Z.J.: Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Comput. Biol. 6, e1000797 (2010)

    Google Scholar 

  10. Billings, G., van Rossum, M.C.W.: Memory Retention and Spike-Timing-Dependent Plasticity. J. Neurophysiol. 101, 2775–2788 (2009)

    Article  Google Scholar 

  11. Kätzel, D., Zemelman, B.V., Buetfering, C., Wölfel, M., Miesenböck, G.: The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat. Neurosci. 14, 100–107 (2011)

    Article  Google Scholar 

  12. Callaway, E.M.: Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks 17, 625–632 (2004)

    Article  MATH  Google Scholar 

  13. Gordon, J.A., Stryker, M.P.: Experience-dependent plasticity of binocular re-sponses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996)

    Google Scholar 

  14. Sakurai, I., Kubota, S., Niwano, M.: A model for ocular dominance plasticity controlled by feedforward and feedback inhibition (submitted)

    Google Scholar 

  15. Song, S., Abbott, L.F.: Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  16. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Poliakov, A.V., Powers, R.K., Binder, M.C.: Functional identification of input-output transforms of motoneurons in cat. J. Physiol. 504, 401–424 (1997)

    Article  Google Scholar 

  18. Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking neurons. Phys. Rev. E59, 4498–4514 (1999)

    Google Scholar 

  19. Bernander, O., Douglas, R.J., Martin, K.A.C., Koch, C.: Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569–11573 (1991)

    Article  Google Scholar 

  20. Wiesel, T.N.: Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982)

    Article  Google Scholar 

  21. Rauschecker, J.P., Singer, W.: Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature 280, 58–60 (1979)

    Article  Google Scholar 

  22. Woodin, M.A., Ganguly, K., Poo, M.M.: Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl−transporter activity. Neuron 39, 807–820 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakurai, I., Kubota, S., Niwano, M. (2013). The Role of Correlated Inhibitory Cell Firing. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02753-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02752-4

  • Online ISBN: 978-3-319-02753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics