Semantically Modeling Mobile Phone Data for Urban Computing

  • Hui Wang
  • Zhisheng Huang
  • Ning Zhong
  • Jiajin Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8210)


Urban computing aims to enhance both human life and urban environment smartly by deeply understanding human behavior occurring in urban area. Nowadays, mobile phones are often used as an attractive option for large-scale sensing of human behavior, providing a source of real and reliable data for urban computing. But analyzing the data also faces some challenges (e.g., the related data is heterogeneous and very big), and the general approaches cannot deal with them efficiently. In this paper, aiming to tackle these challenges and conduct urban computing efficiently, we propose a data integration model for the multi-source heterogeneous data related to mobile phones by using semantic technology and develop a semantic mobile data management system.


Mobile Phone Resource Description Framework Ontology Modeling SPARQL Query Semantic Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng, Y., Zhou, X.: Computing with Spatial Trajectories. Springer-Verlag New York Inc. (2011)Google Scholar
  2. 2.
    Klyne, G., Carroll, J.J.: Resource Description Framework(RDF): Concepts and Abstract Syntax. Recommendation, W3C (2004)Google Scholar
  3. 3.
    Fensel, D., Harmelen, F.V., Andersson, B., Brennan, P., Cunningham, H., Valle, E.D., Fischer, F., Huang, Z., Kiryakov, A., Lee, T.K.-I., Schooler, L., Tresp, V., Wesner, S., Witbrock, M., Zhong, N.: Towards LarKC: A Platform for Web-Scale Reasoning. In: Proceedings of the 2008 IEEE International Conference on Semantic Computing, pp. 524–529 (2008)Google Scholar
  4. 4.
    Assel, M., Cheptsov, A., Gallizo, G., Celino, I., Dell’Aglio, D.: Large Knowledge Collider: A Service-Oriented Platform for Large-Scale Semantic Reasoning. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, pp. 1–9 (2011)Google Scholar
  5. 5.
    Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving Origin Destination Data from A Mobile Phone Network. IET Intelligent Transport Systems 1(1), 15–26 (2007)CrossRefGoogle Scholar
  6. 6.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems 12(1), 141–151 (2011)CrossRefGoogle Scholar
  7. 7.
    Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating Origin-Destination Flows Using Mobile Phone Location Data. IEEE Pervasive Computing 10(4), 36–44 (2011)CrossRefGoogle Scholar
  8. 8.
    Ying, J.J.-C., Lu, E.H.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining User Similarity from Semantic Trajectories. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 19–26 (2010)Google Scholar
  9. 9.
    Ying, J.J.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Semantic Trajectory Mining for Location Prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 34–43 (2011)Google Scholar
  10. 10.
    Steenbruggen, J., Borzacchiello, M., Nijkamp, P., Scholten, H.: Mobile Phone Data from GSM Networks for Traffic Parameter and Urban Spatial Pattern Assessment: A Review of Applications and Opportunities. GeoJournal 78(2), 223–243 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, F., Janssens, D., Wets, G., Cools, M.: Annotating Mobile Phone Location Data with Activity Purposes Using Machine Learning Algorithms. Expert Systems with Applications 40(8), 3299–3311 (2013)CrossRefGoogle Scholar
  12. 12.
    Balduini, M., Celino, I., DellAglio, D., Della Valle, E., Huang, Y., Lee, T., Kim, S.-H., Tresp, V.: BOTTARI: An Augmented Reality Mobile Application to Deliver Personalized and Location-Based Recommendations by Continuous Analysis of Social Media Streams. Web Semantics: Science, Services and Agents on the World Wide Web 16, 33–41 (2012)CrossRefGoogle Scholar
  13. 13.
    Della Valle, E., Celino, I., Dell’Aglio, D., Grothmann, R., Steinke, F., Tresp, V.: Semantic Traffic-Aware Routing Using the LarKC Platform. IEEE Internet Computing 15(6), 15–23 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Hui Wang
    • 1
  • Zhisheng Huang
    • 1
    • 2
  • Ning Zhong
    • 1
    • 3
  • Jiajin Huang
    • 1
  1. 1.International WIC InstituteBeijing University of TechnologyBeijingChina
  2. 2.Dept. of Computer ScienceVrije University of AmsterdamAmsterdamThe Netherlands
  3. 3.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyMaebashi-CityJapan

Personalised recommendations