Advertisement

Identification of K-Tolerance Regulatory Modules in Time Series Gene Expression Data Using a Biclustering Algorithm

  • Tustanah Phukhachee
  • Songrit Maneewongvatana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8210)

Abstract

Nowadays, biclustering problem is still an intractable problem. But in time series expression data, the clusters can be limited those with contiguous columns. This restriction makes biclustering problem to be tractable problem. However existing contiguous column biclustering algorithm can only find the biclusters which have the same value for each column in biclusters without error tolerance. This characteristic leads the algorithm to overlook some patterns in its clustering process. We propose a suffix tree based algorithm that allows biclusters to have inconsistencies in at most k contiguous column. This can reveals previously undiscoverable biclusters. Our algorithm still has tractable run time with this additional feature.

Keywords

biclustering error tolerance regulatory modules suffix tree time series gene expression data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McLachlan, G.J., Do, K., Ambroise, C.: Analysing Microarray Gene Expression Data. John Wiley & Sons, New Jersey (2004)CrossRefGoogle Scholar
  2. 2.
    Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: Proc. 8th Int’l Conf. Intelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103. ACM Press, New York (2000)Google Scholar
  3. 3.
    Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analsis: a survey. IEEE/ACM Trans. Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  4. 4.
    Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-Mode Clustering Methods: A Structured Overview. Statistical Methods in Medical Research 13(5), 979–981 (2004)Google Scholar
  5. 5.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. In: Proc. 6th Int’l Conf. Computational Biology (RECOMB 2002), pp. 49–57 (2002)Google Scholar
  6. 6.
    Ji, L., Tan, K.: Identifying Time-Lagged Gene Clusters Using Gene Expression Data. Bioinformatics 21(4), 509–516 (2005)CrossRefGoogle Scholar
  7. 7.
    Koyuturk, M., Szpankowski, W., Grama, A.: Biclustering Gene-Feature Matrices for Statistically Significant Dense Patterns. In: Proc. 8th Int’l Conf. Research in Computational Molecular Biology (RECOMB 2004), pp. 480–484 (2004)Google Scholar
  8. 8.
    Liu, J., Wang, W., Yang, J.: Biclustering in Gene Expression Data by Tendency. In: Proc. 3rd Int’l IEEE CS Computational Systems Bioinformatics Conf. (CSB 2004), pp. 182–193 (2004)Google Scholar
  9. 9.
    Liu, J., Wang, W., Yang, J.: A Framework for Ontology-Driven Subspace Clustering. In: Proc. ACM SIGKDD 2004, pp. 623–628 (2004)Google Scholar
  10. 10.
    Liu, J., Wang, W., Yang, J.: Gene Ontology Friendly Biclustering of Expression Profiles. In: Proc. 3rd IEEE CS Computational Systems Bioinformatics Conf. (CSB 2004), pp. 436–447 (2004)Google Scholar
  11. 11.
    Liu, J., Wang, W., Yang, J.: Mining Sequential Patterns from Large Data Sets. Advances in Database Systems, vol. 18. Kluwer Academic Publishers (2005)Google Scholar
  12. 12.
    Lonardi, S., Szpankowski, W., Yang, Q.: Finding Biclusters by Random Projections. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 102–116. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Madeira, S.C., Oliveira, A.L.: A Linear Time Algorithm for Biclustering Time Series Expression Data. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 39–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Murali, T.M., Kasif, S.: Extracting Conserved Gene Expression Motifs from Gene Expression Data. In: Proc. 8th Pacific Symp. Biocomputing (PSB 2003), vol. 8, pp. 77–88 (2003)Google Scholar
  15. 15.
    Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A Systematic Comparison and Evaluation of Biclustering Methods for Gene Expression Data. Bioinformatics 22(10), 1282–1283 (2006)CrossRefGoogle Scholar
  16. 16.
    Sheng, Q., Moreau, Y., De Moor, B.: Biclustering Microarray Data by Gibbs Sampling. Bioinformatics 19(2), 196–205 (2003)Google Scholar
  17. 17.
    Tanay, A., Sharan, R., Shamir, R.: Discovering Statiscally Significant Biclusters in Gene Expression Data. Bioinformatics 18(1), 136–144 (2002)CrossRefGoogle Scholar
  18. 18.
    Wu, C., Fu, Y., Murali, T.M., Kasif, S.: Gene Expression Module Discovery Using Gibbs Sampling. Genome Informatics 15(1), 239–248 (2004)Google Scholar
  19. 19.
    Madeira, S.C., Teixeira, M.C., Sá-Correia, L., Oliveira, A.L.: Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm. IEEE/ACM Transaction Computational Biology and Bioinformatics 7(1), 153–165 (2010)CrossRefGoogle Scholar
  20. 20.
    Getz, G., Levine, E., Domany, E.: Coupled Two-Way Clustering Analysis of Gene Microarray Data. Proc. Natural Academy of Sciences Us, 12079–12084 (2000)Google Scholar
  21. 21.
    Madeira, S.C., Gonçalves, J.P., Oliveira, A.L.: Efficient Biclustering Algorithms for identifying transacriptional regulation relationships using time series gene expression data. INESC_ID Tec. Rep. 22 (2007)Google Scholar
  22. 22.
    Peeters, R.: The Maximum Edge Biclique Problem Is NP-Complete. Discrete Applied Math. 131(3), 651–654 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Tustanah Phukhachee
    • 1
  • Songrit Maneewongvatana
    • 1
  1. 1.Department of Computer EngineeringKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations