Advertisement

Word Confidence Estimation and Its Integration in Sentence Quality Estimation for Machine Translation

  • Ngoc-Quang LuongEmail author
  • Laurent Besacier
  • Benjamin Lecouteux
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 244)

Abstract

This paper proposes some ideas to build an effective estimator, which predicts the quality of words in a Machine Translation (MT) output. We integrate a number of features of various types (system-based, lexical, syntactic and semantic) into the conventional feature set, for our baseline classifier training. After the experiments with all features, we deploy a “Feature Selection” strategy to filter the best performing ones. Then, a method that combines multiple “weak” classifiers to build a strong “composite” classifier by taking advantage of their complementarity allows us to achieve a better performance in term of F score. Finally, we exploit word confidence scores for improving the estimation system at sentence level.

Keywords

Target Word Machine Translation Conditional Random Field Target Sentence Statistical Machine Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., Ueffing, N.: Confidence Estimation for Machine Translation. Technical report, JHU/CLSP Summer Workshop (2003)Google Scholar
  2. 2.
    Gandrabur, S., Foster, G.: Confidence Estimation for Text Prediction. In: Conference on Natural Language Learning (CoNLL), Edmonton, pp. 315–321 (May 2003)Google Scholar
  3. 3.
    Ueffing, N., Macherey, K., Ney, H.: Confidence Measures for Statistical Machine Translation. In: MT Summit IX, New Orleans, LA, pp. 394–401 (September 2003)Google Scholar
  4. 4.
    Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., Ueffing, N.: Confidence Estimation for Machine Translation. In: Proceedings of COLING 2004, Geneva, pp. 315–321 (April 2004)Google Scholar
  5. 5.
    Ueffing, N., Ney, H.: Word-level Confidence Estimation for Machine Translation Using Phrased-based Translation Models. In: Human Language Technology Conference and Conference on Empirical Methods in NLP, Vancouver, pp. 763–770 (2005)Google Scholar
  6. 6.
    Xiong, D., Zhang, M., Li, H.: Error Detection for Statistical Machine Translation Using Linguistic Features. In: 48th ACL, Uppsala, Sweden, pp. 604–611 (July 2010)Google Scholar
  7. 7.
    Soricut, R., Echihabi, A.: Trustrank: Inducing Trust in Automatic Translations via Ranking. In: 48th ACL (Association for Computational Linguistics), Uppsala, Sweden, pp. 612–621 (July 2010)Google Scholar
  8. 8.
    Nguyen, B., Huang, F., Al-Onaizan, Y.: Goodness: A Method for Measuring Machine Translation Confidence. In: 49th ACL, Portland, Oregon, pp. 211–219 (June 2011)Google Scholar
  9. 9.
    Felice, M., Specia, L.: Linguistic Features for Quality Estimation. In: 7th Workshop on Statistical Machine Translation, Montreal, Canada, June 7-8, pp. 96–103 (2012)Google Scholar
  10. 10.
    Ueffing, N., Och, F.J., Ney, H.: Generation of Word Graphs in Statistical Machine Translation. In: Conference on Empirical Methods for Natural Language Processing (EMNLP 2002), Philadelphia, PA, pp. 156–163 (2002)Google Scholar
  11. 11.
    Stolcke, A.: Srilm - an Extensible Language Modeling Toolkit. In: 7th International Conference on Spoken Language Processing, Denver, USA, pp. 901–904 (2002)Google Scholar
  12. 12.
    Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, pp. 177–180 (June 2007)Google Scholar
  13. 13.
    Potet, M., Rodier, E.E., Besacier, L., Blanchon, H.: Collection of a Large Database of French-English SMT Output Corrections. In: 8th International Conference on Language Resources and Evaluation, Istanbul, Turkey, May 23-25 (2012)Google Scholar
  14. 14.
    Snover, M., Madnani, N., Dorr, B., Schwartz, R.: Terp System Description. In: MetricsMATR workshop at AMTA (2008)Google Scholar
  15. 15.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: CML 2001, pp. 282–289 (2001)Google Scholar
  16. 16.
    Lavergne, T., Cappé, O., Yvon, F.: Practical Very Large Scale CRFs. In: 48th Annual Meeting of the Association for Computational Linguistics, pp. 504–513 (2010)Google Scholar
  17. 17.
    Raybaud, S., Langlois, D., Smaïli, K.: This sentence is wrong. Detecting errors in machine - translated sentences. Machine Translation 25(1), 1–34 (2011)CrossRefGoogle Scholar
  18. 18.
    Luong, N.Q.: Integrating Lexical, Syntactic and System-based Features to Improve Word Confidence Estimation in SMT. In: JEP-TALN-RECITAL, Grenoble, France, June 4-8, pp. 43–56 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ngoc-Quang Luong
    • 1
    Email author
  • Laurent Besacier
    • 1
  • Benjamin Lecouteux
    • 1
  1. 1.Laboratoire d’Informatique de GrenobleGrenoble Cedex 9France

Personalised recommendations