Skip to main content

The Un-normalized Graph p-Laplacian Based Semi-supervised Learning Method and Protein Function Prediction Problem

  • Conference paper
Knowledge and Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 244))

Abstract

Protein function prediction is a fundamental problem in modern biology. In this paper, we present the un-normalized graph p-Laplacian semi-supervised learning methods. These methods will be applied to the protein network constructed from the gene expression data to predict the functions of all proteins in the network. These methods are based on the assumption that the labels of two adjacent proteins in the network are likely to be the same. The experiments show that that the un-normalized graph p-Laplacian semi-supervised learning methods are at least as good as the current state of the art method (the un-normalized graph Laplacian based semi-supervised learning method) but often lead to better classification accuracy performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shin, H.H., Lisewski, A.M., Lichtarge, O.: Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 23, 3217–3224 (2007)

    Article  Google Scholar 

  2. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America 85, 2444–2448 (1998)

    Article  Google Scholar 

  3. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology 14, 1675–1680 (1996)

    Article  Google Scholar 

  4. Shi, L., Cho, Y., Zhang, A.: Prediction of Protein Function from Connectivity of Protein Interaction Networks. International Journal of Computational Bioscience 1(1) (2010)

    Google Scholar 

  5. Lanckriet, G.R.G., Deng, M., Cristianini, N., Jordan, M.I., Noble, W.S.: Kernel-based data fusion and its application to protein function prediction in yeast. In: Pacific Symposium on Biocomputing, PSB (2004)

    Google Scholar 

  6. Tsuda, K., Shin, H.H., Schoelkopf, B.: Fast protein classification with multiple networks. Bioinformatics (ECCB 2005) 21(suppl. 2), ii59–ii65 (2005)

    Google Scholar 

  7. Tran, L.: Application of three graph Laplacian based semi-supervised learning methods to protein function prediction problem. CoRR abs/1211.4289 (2012)

    Google Scholar 

  8. Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)

    Article  Google Scholar 

  9. Tran, L.: Hypergraph and protein function prediction with gene expression data. CoRR abs/1212.0388 (2012)

    Google Scholar 

  10. Zhou, D., Huang, J., Schoelkopf, B.: Beyond Pairwise Classification and Clustering Using Hypergraphs, Max Planck Institute Technical Report 143, Max Planck Institute for Biological Cybernetics, Tbingen, Germany (2005)

    Google Scholar 

  11. Zhou, D., Huang, J., Schoelkopf, B.: Learning with Hypergraphs: Clustering, Classification, and Embedding. In: Schoelkopf, B., Platt, J.C., Hofmann, T. (eds.) Advances in Neural Information Processing System (NIPS), pp. 1601–1608. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Pandey, G., Atluri, G., Steinbach, M., Kumar, V.: Association Analysis Techniques for Discovering Functional Modules from Microarray Data. In: Proc. ISMB Special Interest Group Meeting on Automated Function Prediction (2008)

    Google Scholar 

  13. Zhou, D., Schölkopf, B.: Regularization on Discrete Spaces. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 361–368. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Zhou, D., Schoelkopf, B.: Discrete Regularization. In: Chapelle, O., Schoelkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 221–232. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Pandey, G., Myers, L.C., Kumar, V.: Incorporating Functional Inter-relationships into Protein Function Prediction Algorithms. BMC Bioinformatics 10, 142 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loc Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tran, L. (2014). The Un-normalized Graph p-Laplacian Based Semi-supervised Learning Method and Protein Function Prediction Problem. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-02741-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02741-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02740-1

  • Online ISBN: 978-3-319-02741-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics