A Spatio-Temporal Profiling Model for Person Identification

  • Nghi Pham
  • Tru Cao
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 244)


Mobility traces include both spatial and temporal aspects of individuals’ movement processes. As a result, these traces are among the most sensitive data that could be exploited to uniquely identify an individual. In this paper, we propose a spatio-temporal mobility model that extends a purely spatial Markov mobility model to effectively tackle the identification problem. The idea is to incorporate temporal perspectives of mobility traces into that probabilistic spatial mobility model to make it more specific for an individual with respect to both space and time. Then we conduct experiments to evaluate the degree to which individuals can be uniquely identified using our spatio-temporal mobility model. The results show that the proposed model outperforms the purely spatial one on the benchmark of MIT Reality Mining project dataset.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayir, M.A., Demirbas, M., Eagle, N.: Discovering Spatio-Temporal Mobility Profiles of Cellphone Users. In: Proc. of the 10th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–9 (2009)Google Scholar
  2. 2.
    Cvrcek, D., Kumpost, M., Matyas, V., Danezis, G.: A Study on the Value of Location Privacy. In: Proc. of the 5th ACM Workshop on Privacy in Electronic Society, pp. 109–118 (2006)Google Scholar
  3. 3.
    De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the Crowd: The Privacy Bounds of Human Mobility. Scientific Reports 3(1376) (2013)Google Scholar
  4. 4.
    De Mulder, Y., Danezis, G., Batina, L., Preneel, B.: Identification via Location-Profiling in GSM Networks. In: Proc. of the 7th ACM Workshop on Privacy in the Electronic Society, pp. 23–32 (2008)Google Scholar
  5. 5.
    Eagle, N., Pentland, A., Lazer, D.: Inferring Friendship Network Structure by Using Mobile Phone Data. Proceedings of The National Academy of Sciences 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  6. 6.
    Eagle, N., Quinn, J.A., Clauset, A.: Methodologies for Continuous Cellular Tower Data Analysis. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 342–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Ghahramani, Z.: An Introduction to Hidden Markov Models and Bayesian Networks. International Journal of Pattern Recognition and Artificial Intelligence 15(1), 9–42 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding Individual Human Mobility Patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  9. 9.
    Lane, N.D., Xie, J., Moscibroda, T., Zhao, F.: On the Feasibility of User De-Anonymization from Shared Mobile Sensor Data. In: Proc. of the 3rd International Workshop on Sensing Applications on Mobile Phones, pp. 1–5 (2012)Google Scholar
  10. 10.
    Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of Predictability in Human Mobility. Science 327(5968), 1018–1021 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sundaresan, A., Chowdhury, A.K.R., Chellappa, R.: A Hidden Markov Model Based Framework for Recognition of Humans from Gait Sequences. In: Proc. of the International Conference on Image Processing, pp. 93–96 (2003)Google Scholar
  12. 12.
    Xia, J.C., Zeephongsekul, P., Packer, D.: Spatial and Temporal Modeling of Tourist Movements Using Semi-Markov Processes. Tourism Management 32(4), 844–851 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nghi Pham
    • 1
  • Tru Cao
    • 1
    • 2
  1. 1.Ho Chi Minh City University of Technology - VNUHCMHo Chi MinhVietnam
  2. 2.John von Neumann Institute - VNUHCMHo Chi MinhVietnam

Personalised recommendations