New Composition of Intuitionistic Fuzzy Relations

  • Bui Cong CuongEmail author
  • Pham Hong Phong
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 244)


Fuzzy relations have applications in fields such as psychology, medicine, economics, and sociology. Burillo and Bustince introduced the concepts of intuitionistic fuzzy relation and a composition of intuitionistic fuzzy relations using four triangular norms or conorms α, β, λ, ρ (we abbreviate to α, β, λ, ρ-composition). In this paper, we define a new composition of intuitionistic fuzzy relations using two intuitionistic fuzzy triangular norms or intuitionistic fuzzy triangular conorms (Φ, Ψ-composition for short). It is shown that α, β, λ, ρ-composition is special case of Φ, Ψ-composition. Many properties of Φ, Ψ-composition are stated and proved.


intuitionistic fuzzy relation composition of intuitionistic fuzzy relations intuitionistic triangular norm t- representability medical diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atanassov, K.T., Stoeva, S.: Intuitionistic Lfuzzy sets. Cybernetics and Systems Research 2, 539–540 (1984)Google Scholar
  3. 3.
    Baets, B., De, K.E.E.: Fuzzy relations and applications. Adv. Electron. Electron. Phys. 89, 255–324 (1994)CrossRefGoogle Scholar
  4. 4.
    Burillo, P., Bustince, H.: Intuitionistic Fuzzy Relations. Part I, Mathware and Soft Computing 2(1), 5–38 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, S., Chen, H., Duro, R., Honaver, V., Kerre, E., Lu, M., Romay, M.G., Shih, T.K., Ventura, D., Wang, P.P., Yang, Y.: Proceedings of the 6th Joint Conference on Information Sciences, pp. 105–108 (2002)Google Scholar
  6. 6.
    Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Systems 12, 45–61 (2004)CrossRefGoogle Scholar
  7. 7.
    Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117, 209–213 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fung, L.W., Fu, K.S.: An axiomatic approach to rational decision making in fuzzy environment. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 227–256. Academic Press (1975)Google Scholar
  10. 10.
    Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sanchez, E.: Solutions in composite fuzzy relation equation. Application to Medical diagnosis in Brouwerian Logic. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Process. Elsevier, North-Holland (1977)Google Scholar
  12. 12.
    Sanchez, E.: Resolution of composition fuzzy relation equations. Inform. Control 30, 38–48 (1976)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Faculty of Information TechnologyNational University of Civil EngineeringHanoiVietnam

Personalised recommendations