Skip to main content

Optimal Relation Between Quantization Precision and Sampling Rates

  • Chapter
Optimal Design of Distributed Control and Embedded Systems

Part of the book series: Communications and Control Engineering ((CCE))

  • 1375 Accesses

Abstract

In this chapter, the problem of the control over limited bandwidth communication channels is addressed. A finely grained model is adopted. Such a model ensures the respect of the bandwidth constraints and allows the influence characterization of update frequency and quantization precision on the control performance. A simple static strategy is first proposed, and its (W,V)-stability properties are studied. An efficient approach for the improvement of disturbance rejection capabilities and steady state precision are then proposed. This approach dynamically assigns the quantization precision of the control signals in order to improve the control performance by taking into account the communication and computation requirements of the introduced dynamic protocol. It naturally allows handling linear time invariant systems (LTI) with multiple inputs. Sufficient conditions for ensuring the practical stability of this approach are stated. Finally, the proposed approach is evaluated and illustrated through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more details please refer to Chap. 2, Sect. 2.2.2.

References

  1. A. Bemporad, M. Morari, Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.-M. Ben Gaid, A. Çela, Trading quantization precision for update rate in systems with limited communication: a model predictive approach. Automatica 46(7), 1210–1214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.-M. Ben Gaid, A. Çela, Y. Hamam, Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system. IEEE Trans. Control Syst. Technol. 14(4), 776–787 (2006)

    Article  Google Scholar 

  4. M.-M. Ben Gaid, A. Çela, Y. Hamam, C. Ionete, Optimal scheduling of control tasks with state feedback resource allocation, in American Control Conference, Minneapolis, Minnesota, USA, June 2006

    Google Scholar 

  5. F. Blanchini, Set invariance in control. Automatica 35(11), 1747–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control 45(7), 1279–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.W. Brockett, Stabilization of motor networks, in 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, December 1995

    Google Scholar 

  8. R.W. Brockett, Minimum attention control, in 36th IEEE Conference on Decision and Control, San Diego, California, USA, December 1997

    Google Scholar 

  9. A. Chaillet, A. Bicchi, Delay compensation in packet-switching networked controlled systems, in 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008

    Google Scholar 

  10. C. De Paersis, F. Mazenc, Stability of quantized time-delay nonlinear systems: a Lyapunov-Krasowskii-functional approach. Math. Control Signals Syst. 21(4), 337–370 (2010)

    Article  Google Scholar 

  11. D.F. Delchamps, Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control 35(8), 916–924 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Elia, S.K. Mitter, Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control 46(9), 1384–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Fagnani, S. Zampieri, Quantized stabilization of linear systems: complexity versus performance. IEEE Transactions on Automatic Control 49(9), 1534–1548 (2004)

    Article  MathSciNet  Google Scholar 

  14. A. Franci, A. Chaillet, Quantized control of nonlinear systems: a robust approach. Int. J. Control 83(12), 2453–2462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.C. Goodwin, H. Haimovich, D.E. Quevedo, J.S. Welsh, A moving horizon approach to networked control systems design. IEEE Transactions on Automatic Control 49(9), 1427–1445 (2004)

    Article  MathSciNet  Google Scholar 

  16. D. Hristu-Varsakelis, Optimal control with limited communication. PhD thesis, Division of Engineering and Applied Sciences, Harvard University, June 1999

    Google Scholar 

  17. I. Kolmanovsky, E.G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 4(4), 317–367 (1998)

    Article  MATH  Google Scholar 

  18. G.N. Nair, R.J. Evans, Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems and Control Letters 41(1), 49–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Nešić, D. Liberzon, A united framework for design and analysis of networked and quantized control systems. IEEE Transactions on Automatic Control 54(4), 732–747 (2009)

    Article  Google Scholar 

  20. S.V. Rakovic, E.C. Kerrigan, K.I. Kouramas, D.Q. Mayne, Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control 50(3), 406–410 (2005)

    Article  MathSciNet  Google Scholar 

  21. S. Tatikonda, S. Mitter, Control under communication constraints. IEEE Transactions on Automatic Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  22. K. Tsumura, H. Ishii, H. Hoshina, Tradeoffs between quantization and packet loss in networked control of linear systems. Automatica 45(12), 2963–2970 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.S. Wong, R.W. Brockett, Systems with finite communication bandwidth constraints—part I: state estimation problems. IEEE Transactions on Automatic Control 42(9), 1294–1299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. W.S. Wong, R.W. Brockett, Systems with finite communication bandwidth constraints—part II: stabilization with limited information feedback. IEEE Transactions on Automatic Control 44(5), 1049–1053 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Çela, A., Ben Gaid, M., Li, XG., Niculescu, SI. (2014). Optimal Relation Between Quantization Precision and Sampling Rates. In: Optimal Design of Distributed Control and Embedded Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02729-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02729-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02728-9

  • Online ISBN: 978-3-319-02729-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics