Skip to main content

Resource Allocation in Distributed Control and Embedded Systems

  • Chapter
  • 1420 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This chapter introduced the basic concepts, the terminology and the state of the art of communication and computation resource allocation approaches in distributed embedded control systems. To this end, the basic concepts of the real-time scheduling theory were overviewed, focusing primarily on the hard real-time scheduling of tasks on processors and messages on deterministic networks. An outline of the state of the art of the approaches for the integrated control and communication/computation resource allocation was given, providing an overview of the tackled problems and the provided solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    NP-complete is the set of all decision problems whose solutions can be verified in polynomial time.

References

  1. S. Al-Areqi, D. Görges, S. Liu, Robust control and scheduling codesign for networked embedded control systems, in 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, December 2011

    Google Scholar 

  2. A. Anta, P. Tabuada, Self-triggered stabilization of homogeneous control systems, in American Control Conference, Seattle, WA, USA, June 2008

    Google Scholar 

  3. A. Anta, P. Tabuada, Space-time scaling laws for self-triggered control, in 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008

    Google Scholar 

  4. A. Anta, P. Tabuada, Isochronous manifolds in self-triggered control, in 48th IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference. CDC/CCC 2009, Shanghai, China, December 2009

    Google Scholar 

  5. A. Anta, P. Tabuada, To sample or not to sample: self-triggered control for nonlinear systems. IEEE Transactions on Automatic Control 55(9), 2030–2042 (2010)

    MathSciNet  Google Scholar 

  6. J. Araujo, A. Anta, M. Mazo, J. Faria, A. Hernandez, P. Tabuada, K.H. Johansson, Self-triggered control for wireless sensor and actuator networks, in Proceedings of 7th IEEE International Conference on Distributed Computing in Sensor Systems, Barcelona, Spain, June 2011

    Google Scholar 

  7. K.-E. Årzén, A simple event-based PID controller, in 14th IFAC World Congress, Beijing, China, July 1999

    Google Scholar 

  8. K.-E. Årzén, A. Cervin, J. Eker, L. Sha, An introduction to control and real-time scheduling co-design, in 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000

    Google Scholar 

  9. K.J. Åström, B. Bernhardsson, Comparison of Riemann and Lebesgue sampling for first order stochastic systems, in 41th IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, December 2002

    Google Scholar 

  10. G. Attiya, Assignment of tasks on parallel and distributed computer systems. PhD thesis, University of Marne-la-Vallée, France, October 2004

    Google Scholar 

  11. E. Bajic, B. Bouard, Réseau Profibus, in Techniques de l’Ingénieur—Traité d’Informatique Industrielle, vol. S 8 160 (Editions Techniques de l’Ingénieur, Paris, 2002)

    Google Scholar 

  12. M.-M. Ben Gaid, Optimal scheduling and control for distributed real-time systems. PhD thesis, Université d’Evry Val d’Essonne, France, November 2006

    Google Scholar 

  13. M.-M. Ben Gaid, A. Çela, Y. Hamam, Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system. IEEE Trans. Control Syst. Technol. 14(4), 776–787 (2006)

    Google Scholar 

  14. M.-M. Ben Gaid, A. Çela, Y. Hamam, Optimal real-time scheduling of control tasks with state feedback resource allocation. IEEE Trans. Control Syst. Technol. 17(2), 309–326 (2009)

    Google Scholar 

  15. M.-M. Ben Gaid, A. Çela, Y. Hamam, C. Ionete, Optimal scheduling of control tasks with state feedback resource allocation, in American Control Conference, Minneapolis, Minnesota, USA, June 2006

    Google Scholar 

  16. E. Bini, A. Cervin, Delay-aware period assignment in control systems, in Proceedings of the 2008 Real-Time Systems Symposium, Barcelona, Spain, November–December 2008

    Google Scholar 

  17. B. Bouard, Ethernet en tant que réseau de terrain: standard Profinet, in Techniques de l’Ingénieur—Traité d’Informatique Industrielle, vol. S 8 162 (Editions Techniques de l’Ingénieur, Paris, 2005)

    Google Scholar 

  18. M.S. Branicky, S.M. Phillips, W. Zhang, Scheduling and feedback co-design for networked control systems, in 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, December 2002

    Google Scholar 

  19. R.W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control 45(7), 1279–1289 (2000)

    MathSciNet  MATH  Google Scholar 

  20. R.W. Brockett, Stabilization of motor networks, in 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, December 1995

    Google Scholar 

  21. A. Burns, A. Wellings, Real-Time Systems and Programming Languages (Addison-Wesley, Reading, 2001)

    Google Scholar 

  22. G. Buttazzo, M. Velasco, P. Martí, G. Fohler, Managing quality-of-control performance under overload conditions, in Proceedings of the 16th Euromicro Conference on Real-Time Systems, Catania, Italy, July 2004

    Google Scholar 

  23. G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications (Prentice Hall, New York, 1997)

    MATH  Google Scholar 

  24. G.C. Buttazzo, G. Lipari, M. Caccamo, L. Abeni, Elastic scheduling for flexible workload management. IEEE Trans. Comput. 51(3), 289–302 (2002)

    Google Scholar 

  25. R. Castane, P. Martí, M. Velasco, A. Cervin, Resource management for control tasks based on the transient dynamics of closed-loop systems, in Proceedings of the 18th Euromicro Conference on Real-Time Systems, Dresden, Germany, July 2006, pp. 171–182

    Google Scholar 

  26. A. Cervin, J. Eker, B. Bernhardsson, K.-E. Årzén, Feedback-feedforward scheduling of control tasks. Real-Time Syst. 23(1–2), 25–53 (2002)

    MATH  Google Scholar 

  27. A. Cervin, M. Velasco, P. Martí, A. Camacho, Optimal online sampling period assignment: theory and experiments. IEEE Trans. Control Syst. Technol. 19(4), 902–910 (2011)

    Google Scholar 

  28. ControlNet International, ControlNet specification, Release 2.0, including Errata 2, December 1999

    Google Scholar 

  29. F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-Time Systems (Wiley, New York, 2003)

    Google Scholar 

  30. C. De Persis, R. Sailer, F. Fabian, On a small-gain approach to distributed event-triggered control, in 18th IFAC World Congress, Milan, Italy, 2011

    Google Scholar 

  31. D. Decotigny, Une infrastructure de simulation modulaire pour l’évaluation de performances de systèmes temps-réel. PhD thesis, Université de Rennes 1, April 2003

    Google Scholar 

  32. D.F. Delchamps, Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control 35(8), 916–924 (1990)

    MathSciNet  MATH  Google Scholar 

  33. S.K. Dhall, C.L. Liu, On a real-time scheduling problem. Oper. Res. 26(1), 127–140 (1978)

    MathSciNet  MATH  Google Scholar 

  34. M. Di Natale, Scheduling the CAN bus with earliest deadline techniques, in Proceedings of the 21st IEEE Real-Time Systems Symposium, Orlando, Floria, USA, September 2000

    Google Scholar 

  35. M.C.F. Donkers, W.P.M.H. Heemels, Output-based event-triggered control with guaranteed L -gain and improved and decentralised event-triggering. IEEE Transactions on Automatic Control 57(6), 1362–1376 (2012)

    MathSciNet  Google Scholar 

  36. R. Dorf, M. Farren, C. Phillips, Adaptive sampling frequency for sampled-data control systems. IEEE Transactions on Automatic Control 7(1), 38–47 (1962)

    Google Scholar 

  37. J. Eker, Flexible Embedded Control Systems. Design and Implementation. PhD thesis, Department of Automatic Control, Lund Institute of Technology, Sweden, December 1999

    Google Scholar 

  38. N. Elia, S.K. Mitter, Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control 46(9), 1384–1400 (2001)

    MathSciNet  MATH  Google Scholar 

  39. F. Fagnani, S. Zampieri, Quantized stabilization of linear systems: complexity versus performance. IEEE Transactions on Automatic Control 49(9), 1534–1548 (2004)

    MathSciNet  Google Scholar 

  40. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979)

    MATH  Google Scholar 

  41. T.M.P. Gommans, W.P.M.H. Heemels, N.W. Bauer, N. van de Wouw, Compensation-based control for lossy communication networks, in American Control Conference, Montreal, Canada, June 2012

    Google Scholar 

  42. T.M.P. Gommans, W.P.M.H. Heemels, N.W. Bauer, N. van de Wouw, Compensation-based control for lossy communication networks. Int. J. Control 86(10), 1880–1897 (2013)

    Google Scholar 

  43. G.C. Goodwin, H. Haimovich, D.E. Quevedo, J.S. Welsh, A moving horizon approach to networked control systems design. IEEE Transactions on Automatic Control 49(9), 1427–1445 (2004)

    MathSciNet  Google Scholar 

  44. D. Görges, M. Izák, S. Liu, Optimal control and scheduling of switched systems. IEEE Transactions on Automatic Control 56(1), 135–140 (2011)

    Google Scholar 

  45. T. Grandpierre, C. Lavarenne, Y. Sorel, Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors, in Proceedings of 7th International Workshop on Hardware/Software Co-design, Rome, Italy, May 1999

    Google Scholar 

  46. G. Guo, H. Jin, A switching system approach to actuator assignment with limited channels. Int. J. Robust Nonlinear Control 20(12), 1407–1426 (2010)

    MathSciNet  MATH  Google Scholar 

  47. S.C. Gupta, Adaptive gain and adaptive sampling sampled-data systems, in Proceedings of the IEEE Winter General Meeting, New York, USA, January 1963

    Google Scholar 

  48. S.C. Gupta, Increasing the sampling efficiency for a control system. IEEE Transactions on Automatic Control 8(3), 263–264 (1963)

    Google Scholar 

  49. W.P.M.H. Heemels, R.J.A. Gorter, A. van Zijl, P.P.J. van den Bosch, S. Weiland, W.H.A. Hendrix, M.R. Vonder, Asynchronous measurement and control: a case study on motor synchronization. Control Eng. Pract. 7(12), 1467–1482 (1999)

    Google Scholar 

  50. W.P.M.H. Heemels, J.H. Sandee, P. Bosch, Analysis of event-driven controllers for linear systems. Int. J. Control 81(4), 571–590 (2008)

    MATH  Google Scholar 

  51. T. Henningsson, E. Johannesson, A. Cervin, Sporadic event-based control of first-order linear stochastic systems. Automatica 44(11), 2890–2895 (2007)

    MathSciNet  Google Scholar 

  52. D. Henriksson, A. Cervin, Optimal on-line sampling period assignment for real-time control tasks based on plant state information, in Joint 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain, December 2005

    Google Scholar 

  53. J.P. Hespanha, Y. Xu, Communication logics for networked control systems, in Proceedings of the 2004 American Control Conference, Boston, Massachusetts, USA, June 2004

    Google Scholar 

  54. J.P. Hespanha, Y. Xu, Optimal communication logics for networked control systems, in 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, December 2004

    Google Scholar 

  55. D. Hristu-Varsakelis, Short-period communication and the role of zero-order holding in networked control systems. IEEE Transactions on Automatic Control 53(5), 1285–1290 (2008)

    MathSciNet  Google Scholar 

  56. T.C. Hsia, Comparisons of adaptive sampling control laws. IEEE Transactions on Automatic Control 17(6), 830–831 (1972)

    Google Scholar 

  57. T.C. Hsia, Analytic design of adaptive sampling control law in sampled-data systems. IEEE Transactions on Automatic Control 19(1), 39–42 (1974)

    MATH  Google Scholar 

  58. ISO, Road vehicles: interchange of digital information—controller area network (CAN) for high-speed communication. ISO standard-11898, November 1993

    Google Scholar 

  59. M. Joseph, P. Pandya, Finding response times in a real-time system. Comput. J. 29(5), 390–395 (1986)

    MathSciNet  Google Scholar 

  60. R. Kocik, Y. Sorel, A methodology to design and prototype optimized embedded robotic systems, in Proceedings of 2nd IMACS International Multiconference, CESA’98, Hammamet, Tunisia, April 1998

    Google Scholar 

  61. H. Kopetz, W. Ochsenreiter, Clock synchronization in distributed real-time systems. IEEE Trans. Comput. 36(8), 933–940 (1987)

    MATH  Google Scholar 

  62. C.M. Krishna, K.G. Shin, Real-Time Systems (McGraw-Hill, New York, 1997)

    MATH  Google Scholar 

  63. Y.-K. Kwok, I. Ahmad, Benchmarking and comparison of the task graph scheduling algorithms. J. Parallel Distrib. Comput. 59(3), 381–422 (1999)

    MATH  Google Scholar 

  64. X.-G. Li, A. Çela, S.-I. Niculescu, A. Reama, Stability analysis of networked control systems based on a switched control, in Proceedings of the 1st IFAC Workshop on Estimation and Control of Networked Systems, Venice, Italy, September 2009

    Google Scholar 

  65. X.-G. Li, A. Çela, S.-I. Niculescu, A. Reama, A switched control method for networked control systems, in 8th IFAC Workshop on Time Delay Systems, Sinaia, Romania, June 2009

    Google Scholar 

  66. F.L. Lian, J.R. Moyne, D.M. Tilbury, Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet. IEEE Control Syst. Mag. 21(1), 66–83 (2001)

    Google Scholar 

  67. B. Lincoln, B. Bernhardsson, LQR optimization of linear system switching. IEEE Transactions on Automatic Control 47(10), 1701–1705 (2002)

    MathSciNet  Google Scholar 

  68. C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)

    MathSciNet  MATH  Google Scholar 

  69. J.W.S. Liu, Real-Time Systems (Prentice Hall, New York, 2000)

    Google Scholar 

  70. X. Liu, L. Sha, M. Caccamo, G. Buttazzo, Online control optimization using load driven scheduling, in Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000

    Google Scholar 

  71. S. Longo, G. Herrmann, P. Barber, Optimization approaches for controller and schedule codesign in networked control, in 6th IFAC Symposium on Robust Control Design, Haifa, Israel, June 2009

    Google Scholar 

  72. C. Lu, J. Stankovic, G. Tao, S. Son, Feedback control real-time scheduling: framework, modeling and algorithms. Special issue on control-theoretic approaches to real-time computing. J. Real-Time Syst. 23(1/2), 85–126 (2002)

    MATH  Google Scholar 

  73. L. Lu, L. Xie, M. Fu, Optimal control of networked systems with limited communication: a combined heuristic and convex optimization approach, in Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA, December 2003

    Google Scholar 

  74. J. Lunze, D. Lehmann, A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    MathSciNet  MATH  Google Scholar 

  75. MAP/TOP Users Group, Manufacturing automation protocol specification—version 3.0, August 1988

    Google Scholar 

  76. N. Marchand, S. Durand, J.F. Guerrero-Castellanos, A general formula for event-based stabilization of nonlinear systems. IEEE Transactions on Automatic Control 58(5), 1332–1337 (2013)

    Google Scholar 

  77. P. Martí, J.M. Fuertes, G. Fohler, K. Ramamritham, Improving quality-of-control using flexible timing constraint: metric and scheduling issues, in Proceedings of the 23rd IEEE Real-Time Systems Symposium, Austin, Texas, USA, December 2002

    Google Scholar 

  78. P. Martì, C. Lin, S.A. Brandt, M. Velasco, J.M. Fuertes, Draco: efficient resource management for resource-constrained control tasks. IEEE Trans. Comput. 58(1), 90–105 (2009)

    MathSciNet  Google Scholar 

  79. M. Mazo, A. Anta, P. Tabuada, On self-triggered control for linear systems: guarantees and complexity, in 10th European Control Conference (2009)

    Google Scholar 

  80. M. Mazo, M. Cao, Decentralized event-triggered control with asynchronous updates, in IEEE Conference on Decision and Control, Orlando, USA, December 2011

    Google Scholar 

  81. M. Mazo, P. Tabuada, Input-to-state stability of self-triggered control systems, in 48th IEEE Conference on Decision and Control, Held Jointly with the 28th Chinese Control Conference. CDC/CCC 2009, Shanghai, China, December 2009

    Google Scholar 

  82. J.R. Mitchell, W.L. McDaniel Jr., Sensitivity of discrete systems to variation of sampling interval. IEEE Transactions on Automatic Control 14(2), 200–201 (1969)

    Google Scholar 

  83. L.A. Montestruque, P.J. Antsaklis, On the model-based control of networked systems. Automatica 39(10), 1837–1843 (2003)

    MathSciNet  MATH  Google Scholar 

  84. L.A. Montestruque, P.J. Antsaklis, Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control 49(9), 1562–1572 (2004)

    MathSciNet  Google Scholar 

  85. G.N. Nair, R.J. Evans, Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems and Control Letters 41(1), 49–56 (2000)

    MathSciNet  MATH  Google Scholar 

  86. N. Navet, Y. Song, F. Simonot-Lion, C. Wilwert, Trends in automotive communication systems. Proc. IEEE 93(6), 1204–1223 (2005)

    Google Scholar 

  87. D. Nešić, A.R. Teel, Input-output stability properties of networked control systems. IEEE Trans. Autom. Control 49(10), 1650–1667 (2004)

    Google Scholar 

  88. J. Nilsson, Real-time control systems with delays. PhD thesis, Department of Automatic Control, Lund Institute of Technology, Sweden, January 1998

    Google Scholar 

  89. L. Palopoli, A. Bicchi, A. Sangiovanni-Vincentelli, Numerically efficient control of systems with communication constraints, in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, USA, December 2002

    Google Scholar 

  90. L. Palopoli, C. Pinello, A. Bicchi, A. Sangiovanni-Vincentelli, Maximizing the stability radius of a set of systems under real-time scheduling constraints. IEEE Transactions on Automatic Control 50(11), 1790–1795 (2005)

    MathSciNet  Google Scholar 

  91. L. Palopoli, C. Pinello, A.L. Sangiovanni-Vincentelli, L. El-Ghaoui, A. Bicchi, Synthesis of robust control systems under resource constraints, in Hybrid Systems: Computation and Control, ed. by M. Greenstreet, C. Tomlin. Lecture Notes in Computer Science, vol. 2289 (Springer, Heidelberg, 2002), pp. 337–350

    Google Scholar 

  92. A. Rachid, F. Collet, Bus CAN, in Techniques de l’Ingénieur—Traité Informatique Industrielle, vol. S 8 140 (Editions Techniques de l’Ingéieur, Paris, 2000)

    Google Scholar 

  93. H. Rehbinder, M. Sanfridson, Integration of off-line scheduling and optimal control, in Proceedings of the 12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden, June 2000

    Google Scholar 

  94. H. Rehbinder, M. Sanfridson, Scheduling of a limited communication channel for optimal control. Automatica 40(3), 491–500 (2004)

    MathSciNet  MATH  Google Scholar 

  95. D. Robert, O. Sename, D. Simon, Sampling period dependent RST controller used in control/scheduling co-design, in 16th IFAC World Congress, Prague, Czech Republic, July 2005

    Google Scholar 

  96. S. Samii, A. Cervin, P. Eles, Z. Peng, Integrated scheduling and synthesis of control applications on distributed embedded systems, in Proceedings of the Conference on Design, Automation and Test in Europe, Dresden, Germany, March 2009, pp. 57–62

    Google Scholar 

  97. S. Samii, P. Eles, Z. Peng, A. Cervin, Quality-driven synthesis of embedded multi-mode control systems, in Proceedings of the Conference on Design, Automation and Test in Europe, Dresden, Germany, July 2009, pp. 864–869

    Google Scholar 

  98. D. Seto, J.P. Lehoczky, L. Sha, K.G. Shin, On task schedulability in real-time control systems, in Proceedings of the 17th IEEE Real-Time Systems Symposium, Los Alamitos, CA, USA, December 1996

    Google Scholar 

  99. G. Seyboth, D.V. Dimarogonas, K.H. Johansson, Control of multi-agent systems via event-based communication, in 18th IFAC World Congress, Milano, Italy, 2011

    Google Scholar 

  100. L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, A.K. Mok, Real-time scheduling theory: a historical perspective. Real-Time Syst. 28(2–3), 101–155 (2004)

    MATH  Google Scholar 

  101. D. Simon, D. Robert, O. Sename, Robust control/scheduling co-design: application to robot control, in Proceedings of the 11th IEEE Real-Time and Embedded Technology and Applications Symposium, San Francisco, USA, March 2005

    Google Scholar 

  102. M. Smith Jr., An evaluation of adaptive sampling. IEEE Transactions on Automatic Control 16(3), 282–284 (1971)

    Google Scholar 

  103. Y. Sorel, Syndex: system-level cad software for optimizing distributed real-time embedded systems. J. ERCIM News 59, 68–69 (2004)

    Google Scholar 

  104. T. Su, S. Longo, G. Herrmann, P. Barber, Computation of an optimal communication schedule in a nonlinear networked control system using sum-of-squares. Systems and Control Letters 61(3), 387–396 (2012)

    MathSciNet  MATH  Google Scholar 

  105. Y.S. Suh, V.H. Nguyen, Y.S. Ro, Modified Kalman filter for networked monitoring systems employing a send-on-delta method. Automatica 43(2), 332–338 (2007)

    MathSciNet  MATH  Google Scholar 

  106. P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52(9), 1680–1685 (2007)

    MathSciNet  Google Scholar 

  107. P. Tabuada, X. Wang, Preliminary results on state-trigered scheduling of stabilizing control tasks, in 45th IEEE Conference on Decision and Control, San Diego, USA, December 2011

    Google Scholar 

  108. S. Tatikonda, S. Mitter, Control under communication constraints. IEEE Transactions on Automatic Control 49(7), 1056–1068 (2004)

    MathSciNet  Google Scholar 

  109. J.-P. Thomesse, A review of the fieldbuses. Annu. Rev. Control 22, 35–45 (1998)

    Google Scholar 

  110. K. Tindell, A. Burns, Guaranteeing message latencies on control area network (CAN), in Proceedings of the 1st International CAN Conference, Mainz, Germany, September 1994

    Google Scholar 

  111. K. Tindell, A. Burns, A.J. Wellings, Calculating controller area network (CAN) message response times. Control Eng. Pract. 3(8), 1163–1169 (1995)

    Google Scholar 

  112. R. Tomovic, G. Bekey, Adaptive sampling based on amplitude sensitivity. IEEE Transactions on Automatic Control 11(2), 282–284 (1966)

    Google Scholar 

  113. R. Tomovic, G. Bekey, Sensitivity of discrete systems to variation of sampling interval. IEEE Transactions on Automatic Control 11(2), 284–287 (1966)

    Google Scholar 

  114. E. Tovar, F. Vasques, Cycle time properties of the Profibus timed-token protocol. Comput. Commun. 22(13), 1206–1216 (1999)

    Google Scholar 

  115. TTTech, Time-triggered protocol TTP/C—high-level specification document—protocol version 1.1, November 2003

    Google Scholar 

  116. P. Velasco, P. Martí, J. Fuertes, The self triggered task model for real-time control systems, in Proceedings of the Work-in-Progress Session 24th IEEE Real-Time Syst. Symp. (RTSS0́3), 2003

    Google Scholar 

  117. G.C. Walsh, O. Beldiman, L.G. Bushnell, Error encoding algorithms for networked control systems. Automatica 38(2), 261–267 (2002)

    MATH  Google Scholar 

  118. G.C. Walsh, H. Ye, Scheduling of networked control systems. IEEE Control Syst. Mag. 21(1), 57–65 (2001)

    Google Scholar 

  119. G.C. Walsh, H. Ye, L.G. Bushnell, Asymptotic behavior of nonlinear networked control systems. IEEE Trans. Autom. Control 46(7), 1093–1097 (2001)

    MATH  Google Scholar 

  120. J. Wang, H. Mounier, A. Çela, S.-I. Niculescu, Event driven intelligent PID controllers with applications to motion control, in 18th IFAC World Congress, Milano, Italy, August 2011

    Google Scholar 

  121. X. Wang, M.D. Lemmon, Event design in event-triggered feedback control systems, in 47th IEEE Conference on Decision and Control 2008, Cancun, Mexico, December 2008

    Google Scholar 

  122. X. Wang, M.D. Lemmon, State based self-triggered feedback control systems with L 2 stability, in 17th IFAC World Congress, Seoul, Korea, July 2008

    Google Scholar 

  123. X. Wang, M.D. Lemmon, Self-triggered feedback control systems with finite-gain l 2 stability. IEEE Transactions on Automatic Control 54(3), 452–467 (2009)

    MathSciNet  Google Scholar 

  124. X. Wang, M.D. Lemmon, Self-triggering under state-independent disturbances. IEEE Transactions on Automatic Control 55(6), 1494–1500 (2010)

    MathSciNet  Google Scholar 

  125. X. Wang, M.D. Lemmon, Event-triggering in distributed networked control systems. IEEE Transactions on Automatic Control 56(3), 586–601 (2011)

    MathSciNet  Google Scholar 

  126. W.S. Wong, R.W. Brockett, Systems with finite communication bandwidth constraints—part I: state estimation problems. IEEE Transactions on Automatic Control 42(9), 1294–1299 (1997)

    MathSciNet  MATH  Google Scholar 

  127. W.S. Wong, R.W. Brockett, Systems with finite communication bandwidth constraints—part II: stabilization with limited information feedback. IEEE Transactions on Automatic Control 44(5), 1049–1053 (1999)

    MathSciNet  MATH  Google Scholar 

  128. F. Xia, Y. Sun, Control-scheduling codesign: a perspective on integrating control and computing. J. Dyn. Contin. Discret. Impuls. Syst., Ser. B (2006)

    Google Scholar 

  129. T. Yang, A. Gerasoulis, List scheduling with and without communication delays. Parallel Comput. 19(12), 1321–1344 (1993)

    MATH  Google Scholar 

  130. Y. Ye, A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem. Math. Oper. Res. 18(2), 334–345 (1993)

    MathSciNet  MATH  Google Scholar 

  131. J.K. Yook, D.M. Tilbury, N.R. Soparkar, Trading computation for bandwidth: reducing communication in distributed control systems using state estimators. IEEE Trans. Control Syst. Technol. 10(4), 503–518 (2002)

    Google Scholar 

  132. H. Zimmermann, OSI reference model—the ISO model of architecture for open system interconnection. IEEE Trans. Commun. 28(4), 425–432 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Çela, A., Ben Gaid, M., Li, XG., Niculescu, SI. (2014). Resource Allocation in Distributed Control and Embedded Systems. In: Optimal Design of Distributed Control and Embedded Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02729-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02729-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02728-9

  • Online ISBN: 978-3-319-02729-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics