Skip to main content

Water Structure, Quantum Nature of Hydrogen Bonds and Diffusion of Water Molecules in Chloride Aqueous Solutions

  • Chapter
  • First Online:
Book cover Management of Water Quality in Moldova

Part of the book series: Water Science and Technology Library ((WSTL,volume 69))

Abstract

A large variety of water properties is caused by the peculiarities of water clusters and water hydrogen bonds which are quantum mechanical in nature due to a small mass of hydrogen atoms. The concentration dependences of the diffusion coefficient D for aqueous solutions were found using the DOSY 2D NMR method. It was shown that with exception of barium chloride solution, which exhibits an anomalous concentration behavior of D in the concentration range 0–10 mg/ml, for two other solutions D decreases with increasing of the concentration. On basis of the generalized Stokes–Einstein equation the following correlation lengths for water and chloride solutions of the concentration \( c = 100 \) mg/ml were obtained: \( \left\langle \xi \right\rangle_{{H_{2} O}} {\kern 1pt} = {\kern 1pt} 1.0 7 \) Å, \( \left\langle \xi \right\rangle_{{MgCl_{2} }} {\kern 1pt} = {\kern 1pt} 0. 9 3 \) Å, \( \left\langle \xi \right\rangle_{{CaCl_{2} }} {\kern 1pt} = {\kern 1pt} 1.04 \) Å and \( \left\langle \xi \right\rangle_{{BaCl_{2} }} {\kern 1pt} = {\kern 1pt} 0. 8 4 \) Å. In the model of equivalent clusters of radius R the formula for estimation of the averaged time interval \( \tau_{0} \) between decay and creation of the clusters \( \tau_{0} \; = \;\tau_{1} \left[ {\left( {R - \xi_{0} } \right)/\left( {\left\langle \xi \right\rangle - \xi_{0} } \right) - 1} \right] \) was proposed (\( \tau_{1} \) is the cluster lifetime and \( \xi_{0} \) is the correlation length of the water without clusters). It was shown that for pure water \( \tau_{0} \approx 10^{ - 8} - 10^{ - 7} {\text{s}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaplin M http://www.lsbu.ac.uk/water/chaplin.html

  2. Isaacs ED, Shukla A, Platzman PM et al (2000) J Phys Chem Solids 61:403–406

    Google Scholar 

  3. Pershin SM (2005) Phys Wave Phenom 13:192–208

    Google Scholar 

  4. Müller A, Bögge H, Diemann T (2003) Inorg Chem Commun 6:52–53

    Google Scholar 

  5. Goncharuk VV (2010) The Science of Water. Naukova Dumka, Kiev

    Google Scholar 

  6. Suresh SJ, Naik VM (2000) J Chem Phys 113:9727–9732

    Article  CAS  Google Scholar 

  7. Smith JD, Cappa CD, Wilson KR et al (2004) Science 306:851–853

    Article  CAS  Google Scholar 

  8. Muller N (1988) J Solutions Chem 17:661–667

    Article  CAS  Google Scholar 

  9. Chaplin MF (2007) In: Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper CL Jr (eds.) Water of life: the unique properties of H2O, edn. CRC Press, p 69–86, 2010. arXiv:0706.1355

    Google Scholar 

  10. Silverstein KAT, Haymet ADJ, Dill KA (2000) J Am Chem Soc 122:8037–8041

    Article  CAS  Google Scholar 

  11. Dougheterty RC (1998) J Chem Phys 109:7372–7378

    Article  Google Scholar 

  12. Yamaguchi Y, Yasutake N, Nagaoka M (2001) Chem Phys Lett 340:129–136

    Article  CAS  Google Scholar 

  13. Lever M, Blunt JM, Maclagan RGAR (2001) Comp Biochem Physiol A 130:471–486

    Google Scholar 

  14. Tiezzi E, Cataluccil M, Marchettini N (2010) Int J Des Nat Ecodyn 5(1):10–20

    Google Scholar 

  15. Heggie MI, Latham CD, Maynard SCP, Jones R (1996) Chem Phys Lett 249:485–490

    Article  CAS  Google Scholar 

  16. Chaplin MF (2000) Biophys Chem 83:211–221

    Article  CAS  Google Scholar 

  17. Vedamuthu M, Singh S, Robinson GW (1994) J Phys Chem 98:2222–2230

    Article  CAS  Google Scholar 

  18. Debenedetti PG (2003) J Phys Condens Matter 15:R1669

    Article  CAS  Google Scholar 

  19. Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, Oxford

    Google Scholar 

  20. Reiter GF, Mayers J, Noreland JJ (2002) Phys Rev B65:104305

    Article  Google Scholar 

  21. Andreani C et al (2005) Adv Phys 54:377

    Article  CAS  Google Scholar 

  22. Pietropaolo A, Senesi R, Andreani C et al (2008) Phys Rev Lett 100:127802

    Article  CAS  Google Scholar 

  23. Reiter GF, Silver R (1985) Phys Rev Lett 54:1047

    Article  CAS  Google Scholar 

  24. Watson GI (1996) J Phys Condens Matter 8:5955

    Article  CAS  Google Scholar 

  25. Andreani C et al (2001) J Chem Phys 115:11243

    Article  CAS  Google Scholar 

  26. Reiter GF et al (2004) Braz J Phys 34:142

    Article  CAS  Google Scholar 

  27. Pietropaolo A et al (2006) JINST 1:P04001

    Article  Google Scholar 

  28. Senesi R et al (2007) Phys Rev Lett 98:138102

    Article  CAS  Google Scholar 

  29. Huang C, Wikfieldt KT, Tokushima T et al (2009) Proc Natl Acad Sci USA 106:15214-15218

    Google Scholar 

  30. Xu L et al (2005) Proc Natl Acad Sci USA 102:16558

    Article  CAS  Google Scholar 

  31. Reiter GF et al (2006) Phys Rev Lett 97:247801

    Article  CAS  Google Scholar 

  32. Reiter GF, Mayers J, Platzman N (2002) Phys Rev Lett 89:135505

    Google Scholar 

  33. Bakker HJ, Nienhuys HK (2002) Science 297:587

    Article  CAS  Google Scholar 

  34. Clark GNI, Hura GL, Teixeira J et al (2010) Proc Natl Acad Sci USA 107:14003–14007

    Article  CAS  Google Scholar 

  35. Andreani C et al (2003) Nucl Instrum Methods Phys Res Sect A497:535

    Google Scholar 

  36. Morrone JA et al (2007) J Chem Phys 126:234504

    Article  Google Scholar 

  37. Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54:5237–5247

    Article  CAS  Google Scholar 

  38. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  39. Bosio L, Teixeira J, Stanley HE (1981) Phys Rev Lett 46:597–600

    Article  CAS  Google Scholar 

  40. Xie YL, Ludwig KF, Morales G et al (1993) Phys Rev Lett 71:2050–2053

    Article  CAS  Google Scholar 

  41. Li X.-Z, Walker B, Michaelides A (2011) Proc Natl Acad Sci USA 108:6369–6373

    Google Scholar 

  42. Morrone JA, Car R (2008) Phys Rev Lett 101:017801

    Article  Google Scholar 

  43. Morrone JA, Car R (2009) J Chem Phys 130:204511

    Article  Google Scholar 

  44. Burnham CJ et al (2006) Phys Chem Chem Phys 8:3966–3977

    Article  CAS  Google Scholar 

  45. Burnham CJ et al (2008) J Chem Phys 128:154519

    Article  CAS  Google Scholar 

  46. Matsushita E, Matsubara T (1982) Prog Theor Phys 67:1–19

    Article  CAS  Google Scholar 

  47. Lobo VMM (1990) Handbook of electrolyte solutions. Elsevier, Amsterdam

    Google Scholar 

  48. Karmazina TV, Kavitskaya AA, Slisenko VI et al (2005) Desalination 184:337–345

    Article  CAS  Google Scholar 

  49. Thrippleton MJ, Loening NM, Keller J (2003) Magn Res Chem 41:441–447

    Article  CAS  Google Scholar 

  50. Eaves JD, Loparo JJ, Fecko CJ et al (2005) Proc Natl Acad Sci USA 102:13019–13022

    Google Scholar 

  51. Berezhkovskii AM, Sutmann G (2002) Phys Rev E 65:060201(R)

    Google Scholar 

  52. Kholodenko AL, Douglas JF (1995) Phys Rev E 51:1081–1090

    Article  CAS  Google Scholar 

  53. Afzal M, Saleem M, Tariq M (1989) J Chem Eng Data 34:339–346

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Geru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geru, I.I. (2014). Water Structure, Quantum Nature of Hydrogen Bonds and Diffusion of Water Molecules in Chloride Aqueous Solutions. In: Duca, G. (eds) Management of Water Quality in Moldova. Water Science and Technology Library, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-02708-1_2

Download citation

Publish with us

Policies and ethics