Skip to main content

Low-Cost Whole-Body Touch Interaction for Manual Motion Control of a Mobile Service Robot

  • Conference paper
Book cover Social Robotics (ICSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8239))

Included in the following conference series:

Abstract

Mobile service robots for interaction with people need to be easily maneuverable by their users, even if physical restrictions make a manual pushing and pulling impossible. In this paper, we present a low cost approach that allows for intuitive tactile control of a mobile service robot while preserving constraints of a differential drive and obstacle avoidance. The robot’s enclosure has been equipped with capacitive touch sensors able to recognize proximity of the user’s hands. By simulating forces applied by the touching hands, a desired motion command for the robot is derived and combined with other motion objectives in a local motion planner (based on Dynamic Window Approach in our case). User tests showed that this haptic control is intuitively understandable and outperforms a solution using direction buttons on the robot’s touch screen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross, H.-M., et al.: Progress in Developing a Socially Assistive Mobile Home Robot Companion for the Elderly with Mild Cognitive Impairment. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2011), pp. 2430–2437 (2011)

    Google Scholar 

  2. Weiss, K., Worn, H.: Resistive tactile sensor matrices using inter-electrode sampling. In: Proc. 31st Conf. IEEE Industrial Electronics Society (IECON 2005), Raleigh, North Carolina, USA, pp. 1949–1954 (2005)

    Google Scholar 

  3. Pan, Z., Cui, H., Zhu, Z.: A flexible full-body tactile sensor of low cost and minimal connections. In: Proc. IEEE Intl. Conf. on Systems, Man and Cybernetics (IEEE-SMC 2003), Washington, D.C., USA, vol. 3, pp. 2368–2373 (2003)

    Google Scholar 

  4. McMath, W.S., Colven, M.D., Yeung, S.K., Petriu, E.M.: Tactile pattern recognition using neural networks. In: Proc. Intl. Conf. on Industrial Electronics, Control, and Instrumentation (IECON 1993), Lahaina, Hawaii, vol. 3, pp. 1391–1394 (1993)

    Google Scholar 

  5. Mukai, T., et al.: Development of the Tactile Sensor System of a Human-Interactive Robot ‘RI-MAN’. IEEE Transactions on Robotics 24(2), 505–512 (2008)

    Google Scholar 

  6. Cannata, G., Denei, S., Mastrogiovanni, F.: Contact based robot control through tactile maps. In: Proc. 49th IEEE Conference on Decision and Control (CDC 2010), Atlanta, Georgia, USA, pp. 3578–3583 (2010)

    Google Scholar 

  7. Iwata, H., Sugano, S.: Whole-body covering tactile interface for human robot coordination. In: Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA 2002), Washington, D.C., USA, vol. 4, pp. 3818–3824 (2002)

    Google Scholar 

  8. Kosuge, K., Hayashi, T., Hirata, Y., Tobiyama, R.: Dance partner robot - Ms DanceR. In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS 2003), Las Vegas, Nevada, USA, vol. 4, pp. 3459–3464 (2003)

    Google Scholar 

  9. QTouch technology website, http://www.atmel.com/products/touchsolutions/bsw/qtouch.aspx

  10. Einhorn, E., Stricker, R., Gross, H.-M., Langner, T., Martin, C.: MIRA - Middleware for Robotic Applications. To appear: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal (2012)

    Google Scholar 

  11. Einhorn, E., Langner, T.: Pilot - Modular Robot Navigation for Real-World Applications. In: Proc. 55th Int. Scientific Colloquium, Ilmenau, Germany, pp. 382–387 (2010)

    Google Scholar 

  12. Fox, D., et al.: The Dynamic Window Approach to Collision Avoidance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997)

    Article  Google Scholar 

  13. Philippsen, R., Siegwart, R.: An Interpolated Dynamic Navigation Function. In: Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA 2005), Barcelona, Spain, pp. 3782–3789 (2005)

    Google Scholar 

  14. http://www.serroga.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, S., Schröter, C., Gross, HM. (2013). Low-Cost Whole-Body Touch Interaction for Manual Motion Control of a Mobile Service Robot. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds) Social Robotics. ICSR 2013. Lecture Notes in Computer Science(), vol 8239. Springer, Cham. https://doi.org/10.1007/978-3-319-02675-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02675-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02674-9

  • Online ISBN: 978-3-319-02675-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics