Skip to main content

Adsorption of Metal Phthalocyanines on Ag(100)

  • Chapter
  • First Online:
Electronic Structure of Metal Phthalocyanines on Ag(100)

Part of the book series: Springer Theses ((Springer Theses))

  • 981 Accesses

Abstract

Since its invention STM has been widely used to study molecules on surfaces. It proved an ideal tool for this purpose, giving access to both the real space adsorption geometry and electronic structure of molecular adsorbates. CuPc on polycrystalline Silver were among the first molecules studied as early as 1987 [1–3]. Today many more MePc molecules on different metal surfaces have been investigated (Me = Cu [1, 3–6], Co [6–8], Fe [9–16], Ni [12], Pd [17], Zn [18], Mn [19, 20], Sn [21]). In general, single MePc molecules adsorb flat on the surface, and their four isoindole groups (see Fig. 4.1) are imaged as a four lobed cross shape in STM topography. Depending on the character of the filled d states of the metal ion, the center appears either as a dip or as a protrusion [6, 12]. The interplay between molecule-substrate and molecule–molecule interactions leads to the self assembly of MePc into highly ordered clusters or layers. The substrate symmetry in relation to the four fold symmetry of the molecules can lead to ordered molecular domains [9]. Multilayer films show a growth structure with the molecular plane parallel [22] or tilted with respect to the surface plane [9, 10]. Many growth studies on noble metal (111) surfaces have been undertaken on Ag(111): CuPc monolayers [23], FePc up to multilayer [10], FePc sub-monolayer [24, 25], single SnPc to multilayer [21]; on Au(111): MnPc and FePc sub-monolayer [19], CoPc multilayers [26], SnPc multilayers [27], single FePc to monolayer [16] and on Cu(111) single CoPc [8, 28] and up to monolayer structures [29]. For the (100) surface studies are more scarce, to our best knowledge only CoPc [30] and NiPc/CuPc monolayers [31] on Cu(100) have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Gimzewski, E. Stoll, R. Schlittler, Scanning tunneling microscopy of individual molecules of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf. Sci. 181(1–2), 267–277 (1987). doi:10.1016/0039-6028(87)90167-1

    Article  ADS  Google Scholar 

  2. H. Ohtani, R.J. Wilson, S. Chiang, C.M. Mate, Scanning tunneling microscopy observations of benzene molecules on the Rh\((111)-(3 \times 3) ({\rm C}_{6}{\rm H}_{6} + 2CO)\) surface. Phys. Rev. Lett. 60(23), 2398–2401 (June 1988). doi:10.1103/PhysRevLett.60.2398

  3. P.H. Lippel, R.J. Wilson, M.D. Miller, C. Wöll, S. Chiang, High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62(2), 171–174 (1989). doi:10.1103/PhysRevLett.62.171

    Article  ADS  Google Scholar 

  4. G.V. Nazin, X.H. Qiu, W. Ho, Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302(5642), 77–81 (2003). doi:10.1126/science.1088971

    Article  ADS  Google Scholar 

  5. X.W. Tu, G. Mikaelian, W. Ho, Controlling single-molecule negative differential resistance in a double-barrier tunnel junction. Phys. Rev. Lett. 100(12), 126807 (2008). doi:10.1103/PhysRevLett.100.126807

    Article  ADS  Google Scholar 

  6. X. Lu, K.W. Hipps, X.D. Wang, U. Mazur, Scanning tunneling microscopy of metal phthalocyanines: the d7 and d9 cases. J. Am. Chem. Soc. 118(30), 7197–7202 (1996). doi:10.1021/ja960874e

    Article  Google Scholar 

  7. A. Zhao, Controlling the kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309(5740), 1542–1544 (2005). doi:10.1126/science.1113449

    Article  ADS  Google Scholar 

  8. C. Iacovita, M. Rastei, B. Heinrich, T. Brumme, J. Kortus, L. Limot, J. Bucher, Visualizing the spin of individual cobalt-phthalocyanine molecules. Phy. Rev. Lett. 101(11), 2008. doi:10.1103/PhysRevLett.101.116602

    Google Scholar 

  9. A. Scarfato, S. Chang, S. Kuck, J. Brede, G. Hoffmann, R. Wiesendanger, Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. Sci. 602(3), 677–683 (2008). doi:16/j.susc.2007.11.011

    Article  ADS  Google Scholar 

  10. T.G. Gopakumar, T. Brumme, J. Kröger, C. Toher, G. Cuniberti, R. Berndt, Coverage-driven electronic decoupling of Fe-phthalocyanine from a Ag(111) substrate. J. Phys. Chem. C 115(24), 12173–12179 (2011). doi:10.1021/jp2038619

    Article  Google Scholar 

  11. L. Gao, W. Ji, Y.B. Hu, Z.H. Cheng, Z.T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S.X. Du, W.A. Hofer, X.C. Xie, H. Gao, Site-specific kondo effect at ambient temperatures in Iron-based molecules. Phys. Rev. Lett. 99(10), (2007). doi:10.1103/PhysRevLett.99.106402

    Google Scholar 

  12. X. Lu, K.W. Hipps, Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B 101(27), 5391–5396 (1997). doi:10.1021/jp9707448

    Article  Google Scholar 

  13. Z.H. Cheng, L. Gao, Z.T. Deng, Q. Liu, N. Jiang, X. Lin, X.B. He, S.X. Du, H. Gao, Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 111(6), 2656–2660 (2007). doi:10.1021/jp0660738

    Article  Google Scholar 

  14. J. Åhlund, J. Schnadt, K. Nilson, E. Göthelid, J. Schiessling, F. Besenbacher, N. Mårtensson, C. Puglia, The adsorption of iron phthalocyanine on graphite: a scanning tunnelling microscopy study. Surf. Sci. 601(17), 3661–3667 (2007). doi:10.1016/j.susc.2007.06.008

    Article  ADS  Google Scholar 

  15. N. Tsukahara, Adsorption-induced switching of magnetic anisotropy in a single Iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102(16), 167203 (2009). doi:10.1103/PhysRevLett.102.167203

    Article  ADS  Google Scholar 

  16. N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, M. Kawai, Evolution of kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 106(18), 187201 (2011). doi:10.1103/PhysRevLett.106.187201

    Article  ADS  Google Scholar 

  17. T.G. Gopakumar, M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843 (2004). doi:10.1021/jp037751i

    Article  Google Scholar 

  18. M. Koudia, M. Abel, C. Maurel, A. Bliek, D. Catalin, M. Mossoyan, J. Mossoyan, L. Porte, Influence of chlorine substitution on the self-assembly of zinc phthalocyanine. J. Phys. Chem. B 110(20), 10058–10062 (2006). doi:10.1021/jp0571980

    Article  Google Scholar 

  19. Y.H. Jiang, W.D. Xiao, L.W. Liu, L.Z. Zhang, J.C. Lian, K. Yang, S.X. Du, H. Gao, Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C 115(44), 21750–21754 (2011). doi:10.1021/jp203462f

    Article  Google Scholar 

  20. K.J. Franke, G. Schulze, J.I. Pascual, Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332(6032), 940–944 (2011). doi:10.1126/science.1202204

    Google Scholar 

  21. Y. Wang, J. Kröger, R. Berndt, W. Hofer, Structural and electronic properties of ultrathin tin-phthalocyanine films on Ag(111) at the single-molecule level. Angewandte Chem. Int. Edn. 48(7), 1261–1265 (2009). doi:10.1002/anie.200803305

    Article  Google Scholar 

  22. X. Chen, Y. Fu, S. Ji, T. Zhang, P. Cheng, X. Ma, X. Zou, W. Duan, J. Jia, Q. Xue, Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101(19), (2008). doi:10.1103/PhysRevLett.101.197208

    Google Scholar 

  23. J. Grand, T. Kunstmann, D. Hoffmann, A. Haas, M. Dietsche, J. Seifritz, R. Möller, Epitaxial growth of copper phthalocyanine monolayers on Ag(111). Surf. Sci. 366(3), 403–414 (1996). doi:10.1016/0039-6028(96)00838-2

    Article  ADS  Google Scholar 

  24. S.C. Bobaru, E. Salomon, J. Layet, T. Angot, Structural properties of iron phtalocyanines on Ag(111): from the submonolayer to monolayer range. J. Phys. Chem. C 115(13), 5875–5879 (2011). doi:10.1021/jp111715a

    Article  Google Scholar 

  25. T. Takami, C. Carrizales, K. Hipps, Commensurate ordering of iron phthalocyanine on Ag(1 1 1) surface. Surf. Sci. 603(21), 3201–3204 (2009). doi:10.1016/j.susc.2009.08.029

    Article  ADS  Google Scholar 

  26. M. Takada, H. Tada, Low temperature scanning tunneling microscopy of phthalocyanine multilayers on Au(1 1 1) surfaces. Chem. Phys. Lett. 392(1–3), 265–269 (2004). doi:16/j.cplett.2004.04.121

    Article  ADS  Google Scholar 

  27. Y. Wang, J. Kröger, R. Berndt, H. Tang, Molecular nanocrystals on ultrathin NaCl films on Au(111). J. Am. Chem. Soc. 132(36), 12546–12547 (2010). doi:10.1021/ja105110d

    Article  Google Scholar 

  28. B.W. Heinrich, C. Iacovita, T. Brumme, D. Choi, L. Limot, M.V. Rastei, W.A. Hofer, J. Kortus, J. Bucher, Direct observation of the tunneling channels of a chemisorbed molecule. J. Phys. Chem. Lett. 1(10), 1517–1523 (2010). doi:10.1021/jz100346a

    Article  Google Scholar 

  29. R. Cuadrado, J.I. Cerdá, Y. Wang, G. Xin, R. Berndt, H. Tang, CoPc adsorption on Cu(111): origin of the C4 to C2 symmetry reduction. J. Chem. Phys. 133(15), 154701–154701-7, 2010. doi:doi:10.1063/1.3502682

    Google Scholar 

  30. M. Takada, H. Tada, Direct observation of adsorption-induced electronic states by low-temperature scanning tunneling microscopy. Ultramicroscopy 105(1–4), 22–25 (2005)

    Article  Google Scholar 

  31. G. Dufour, C. Poncey, F. Rochet, H. Roulet, S. Iacobucci, M. Sacchi, F. Yubero, N. Motta, M. Piancastelli, A. Sgarlata, M. De Crescenzi, Metal phthalocyanines (MPc, M=Ni, Cu) on Cu(001) and Si(001) surfaces studied by XPS, XAS and STM. J. Electr. Spectr. Related Phenomena 76, 219–224 (1995). doi:10.1016/0368-2048(95)02479-4

    Article  Google Scholar 

  32. Z. Hu, B. Li, A. Zhao, J. Yang, J.G. Hou, Electronic and magnetic properties of metal phthalocyanines on Au(111) surface: a first-principles study. J. Phys. Chem. C 112(35), 13650–13655 (2008). doi:10.1021/jp8043048

    Article  Google Scholar 

  33. P. Gargiani, M. Angelucci, C. Mariani, M.G. Betti, Metal-phthalocyanine chains on the Au(110) surface: interaction states versus d -metal states occupancy. Phys. Rev. B 81(8), 2010. doi:10.1103/PhysRevB.81.085412

  34. X. Chen, M. Alouani, Effect of metallic surfaces on the electronic structure, magnetism, and transport properties of Co-phthalocyanine molecules. Phys. Rev. B 82(9), 094443 (2010). doi:10.1103/PhysRevB.82.094443

    Article  ADS  Google Scholar 

  35. M. Parschau, R. Fasel, K. Ernst, O. Gröning, L. Brandenberger, R. Schillinger, T. Greber, A.P. Seitsonen, Y. Wu, J.S. Siegel, Buckybowls on metal surfaces: symmetry mismatch and enantiomorphism of corannulene on Cu(110). Angewandte Chemie International Edition 46(43), 8258–8261 (2007). doi:10.1002/anie.200700610

    Article  Google Scholar 

  36. N.V. Richardson, Adsorption-induced chirality in highly symmetric hydrocarbon molecules: lattice matching to substrates of lower symmetry. New J. Phys. 9, 395–395 (2007). doi:10.1088/1367-2630/9/10/395

    Article  ADS  Google Scholar 

  37. M. Schöck, R. Otero, S. Stojkovic, F. Hümmelink, A. Gourdon, I. Stensgaard, C. Joachim, F. Besenbacher, Chiral close-packing of achiral star-shaped molecules on solid surfaces. J. Phys. Chem. B 110(26), 12835–12838 (2006). doi:10.1021/jp0619437

    Article  Google Scholar 

  38. M. Böhringer, K. Morgenstern, W. Schneider, R. Berndt, F. Mauri, A. De Vita, R. Car, Two-dimensional self-assembly of supramolecular clusters and chains. Phys.l Rev. Lett. 83(2), 324–327 (1999). doi:10.1103/PhysRevLett.83.324

    Article  ADS  Google Scholar 

  39. J. Weckesser, A. De Vita, J.V. Barth, C. Cai, K. Kern, Mesoscopic correlation of supramolecular chirality in One-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 87(9), 096101 (2001). doi:10.1103/PhysRevLett.87.096101

    Article  ADS  Google Scholar 

  40. H. Röder, E. Hahn, H. Brune, J. Bucher, K. Kern, Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141–143 (1993). doi:10.1038/366141a0

    Article  ADS  Google Scholar 

  41. C. Viedma, Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94(6), 065504 (2005). doi:10.1103/PhysRevLett.94.065504

    Article  ADS  Google Scholar 

  42. N. Petit-Garrido, J. Ignés-Mullol, J. Claret, F. Sagués, Chiral selection by interfacial shearing of self-assembled achiral molecules. Phys. Rev. Lett. 103(23), 237802 (2009). doi:10.1103/PhysRevLett.103.237802

    Article  ADS  Google Scholar 

  43. W. Auwärter, A. Weber-Bargioni, A. Riemann, A. Schiffrin, O. Gröning, R. Fasel, J.V. Barth, Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111). J. Chem. Phys. 124, 194708 (2006). doi:10.1063/1.2194541

    Article  ADS  Google Scholar 

  44. D. Écija, M. Trelka, C. Urban, Molecular conformation, organizational chirality, and iron metalation of meso-tetramesitylporphyrins on copper(100). J. Phys. Chem. C 112(24), 8988–8994 (2008). doi:10.1021/jp801311x

    Article  Google Scholar 

  45. R. Fasel, M. Parschau, K. Ernst, Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439(7075), 449–452 (2006). doi:10.1038/nature04419

    Article  ADS  Google Scholar 

  46. M. Parschau, S. Romer, K. Ernst, Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126(47), 15398–15399 (2004). doi:10.1021/ja044136z

    Article  Google Scholar 

  47. S. Blankenburg, W.G. Schmidt, Long-range chiral recognition due to substrate locking and substrate-adsorbate charge transfer. Phys. Rev. Lett. 99(19), 196107 (2007). doi:10.1103/PhysRevLett.99.196107

    Article  ADS  Google Scholar 

  48. S. Blankenburg, W.G. Schmidt, Spatial modulation of molecular adsorption energies due to indirect interaction. Phys. Rev. B 78(23), 233411 (2008). doi:10.1103/PhysRevB.78.233411

    Article  ADS  Google Scholar 

  49. W. Hofer, V. Humblot, R. Raval, Conveying chirality onto the electronic structure of achiral metals: (R, R)-tartaric acid on nickel. Surf. Sci. 554(2–3), 141–149 (2004). doi:10.1016/j.susc.2003.12.060

    Article  ADS  Google Scholar 

  50. J. Mahanty, Screening of the intermolecular van der waals interaction at a metal surface. Phys. Rev. B 35(8), 4113–4115 (1987). doi:10.1103/PhysRevB.35.4113

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Krull .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krull, C. (2014). Adsorption of Metal Phthalocyanines on Ag(100). In: Electronic Structure of Metal Phthalocyanines on Ag(100). Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02660-2_4

Download citation

Publish with us

Policies and ethics