Skip to main content

Noise-induced Periodicity: Some Stochastic Models for Complex Biological Systems

  • Chapter
Mathematical Models and Methods for Planet Earth

Part of the book series: Springer INdAM Series ((SINDAMS,volume 6))

Abstract

After a review of some examples of life science stochastic models, we propose a stylized model with characteristics inspired by the examples above, reproducing noise-induced pulsations as a collective macroscopic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acebrón, J.A., López Bonilla, L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern physics 77(1), 137 (2005)

    Article  Google Scholar 

  2. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the kuramoto model. J. Statist. Phys. 138, 270–290 (2010)

    Article  CAS  Google Scholar 

  3. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural computation 11(7), 1621–1671 (1999)

    Article  CAS  Google Scholar 

  4. Carletti, T., Villari, G.: A note on existence and uniqueness of limit cycles for Liénard systems. Journal of mathematical analysis and applications 307(2), 763–773 (2005)

    Article  Google Scholar 

  5. Dai Pra, P., Fischer, M., Regoli, D.: A Curie-Weiss model with dissipation. Journal of Statistical Physics 152, 37–53 (2013)

    Article  Google Scholar 

  6. Dai Pra, P., Giacomin, G., Regoli, D.: Periodic behavior in a Curie-Weiss model with noisy rates. In preparation (2013)

    Google Scholar 

  7. Elowitz, M.B., Leibler, S.: Asynthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  CAS  Google Scholar 

  8. Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proceedings of the National Academy of Sciences of the United States of America 101(30), 10955–10960 (2004)

    Article  CAS  Google Scholar 

  9. Giacomin, G., Pakdaman, K., Pellegrin, X., Poquet, C.: Transitions in Active Rotator Systems: Invariant Hyperbolic Manifold Approach. SIAM J. Math. Anal. 44(6), 4165–4194 (2012)

    Article  Google Scholar 

  10. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Courier Dover Publications, New York (2003)

    Google Scholar 

  11. McMillen, D., Kopell, N., Hasty, J., Collins, J.J.: Synchronizing genetic relaxation oscillators by intercell signaling. Proceedings of the National Academy of Sciences 99(2), 679–684 (2002)

    Article  CAS  Google Scholar 

  12. Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013)

    Article  Google Scholar 

  13. Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23(1), 55–75 (2010)

    Article  Google Scholar 

  14. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active brownian particles. The European Physical Journal Special Topics 202(1), 1–162 (2012)

    Article  CAS  Google Scholar 

  15. Sabatini, M., Villari, G.: Limit cycle uniqueness for a class of planar dynamical systems. Applied mathematics letters 19(11), 1180–1184 (2006)

    Article  Google Scholar 

  16. Sakaguchi, H., Shinomoto, S., Kuramoto, Y.: Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Progress of Theoretical Physics 79(3), 600–607 (1988)

    Article  Google Scholar 

  17. Scheutzow, M.: Periodic behavior of the stochastic brusselator in the mean-field limit. Probability theory and related fields 72(3), 425–462 (1986)

    Article  Google Scholar 

  18. Schweitzer, F.: Brownian agents and active particles. Collective dynamics in the natural and social sciences, With a foreword by J. Doyne Farmer. Springer Series in Synergetics. Springer-Verlag, Berlin Heidelberg New York (2003)

    Google Scholar 

  19. Shinomoto, S., Kuramoto, Y.: Phase transitions in active rotator systems. Progress of Theoretical Physics 75(5), 1105–1110 (1986)

    Article  Google Scholar 

  20. Touboul, J., Hermann, G., Faugeras, O.: Noise-induced behaviors in neural mean field dynamics. SIAM J. Applied Dynamical Systems 11(1) 49–81 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Dai Pra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pra, P.D., Giacomin, G., Regoli, D. (2014). Noise-induced Periodicity: Some Stochastic Models for Complex Biological Systems. In: Celletti, A., Locatelli, U., Ruggeri, T., Strickland, E. (eds) Mathematical Models and Methods for Planet Earth. Springer INdAM Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-02657-2_3

Download citation

Publish with us

Policies and ethics