Skip to main content

The Role of Boundary Layers in the Large-scale Ocean Circulation

  • Chapter
  • 1525 Accesses

Part of the book series: Springer INdAM Series ((SINDAMS,volume 6))

Abstract

Understanding the mechanisms governing the ocean circulation is a challenge for geophysicists, but also for mathematicians who have to develop tools to analyze these complex models (involving a large number of time and space scales).

A particularly important mechanism for the large-scale circulation is the boundary layer phenomenon, which accounts for amacroscopic part of the energetic fluxes. We will show here using a very simplified model that it explains in particular the Western intensification of currents. We will then exhibit the mathematical difficulties arising in more complex geometries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bresch, D., Colin, T.: Some remarks on the derivation of the Sverdrup relation. J. Math. Fluid Mech. 4(2), 95–108 (2002)

    Article  Google Scholar 

  2. Bresch, D., Guillén-Gonzalez, F., Rodríguez-Bellido, M.A.: A corrector for the Sverdrup solution for a domain with islands. Appl. Anal. 83(3), 217–230 (2004)

    Article  Google Scholar 

  3. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Basics of Mathematical Geophysics. Oxford Lecture Series in Mathematics and its Applications 32. Oxford University Press, New York (2006)

    Google Scholar 

  4. Dalibard, A.-L.: Asymptotic behavior of a rapidly rotating fluid with random stationary surface stress. SIAM J. Math. Anal. 41, 511–563 (2009)

    Article  Google Scholar 

  5. Dalibard, A.-L., Saint-Raymond, L.: Mathematical study of rotating fluids with resonant surface stress. J. Differential Equations 246(6), 2304–2354 (2009)

    Article  Google Scholar 

  6. Dalibard, A.-L., Saint-Raymond, L.: Mathematical study of the β-plane model for rotating fluids in a thin layer. J. Math. Pures Appl. 94(2), 131–169 (2010)

    Article  Google Scholar 

  7. Dalibard, A.-L., Saint-Raymond, L.: Mathematical study of degenerate boundary layers. Preprint (2012). arxiv 1203–5663

    Google Scholar 

  8. Desjardins, B., Grenier, E.: On the Homogeneous Model of Wind-Driven Ocean Circulation, SIAM Journal on Applied Mathematics 60, 43–60 (1999)

    Article  Google Scholar 

  9. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Amer.Math. Soc. 23, 591–609 (2010)

    Article  Google Scholar 

  10. Eckhaus, W., de Jager, E.M.: Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch. Rational Mech. Anal. 23, 26–86 (1966)

    Article  Google Scholar 

  11. Ekman, V.W.: On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys. 2, 1–52 (1905)

    Google Scholar 

  12. Gallagher, I., Saint-Raymond, L.: On the influence of the Earth’s rotation on geophysical flows. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics. Elsevier, The Netherlands (2007)

    Google Scholar 

  13. Gérard-Varet, D.: Highly rotating fluids in rough domains. J. Math. Pures Appl. 82, 1453–1498 (2003)

    Article  Google Scholar 

  14. Gill, A. E.: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30. Academic Press, London (1982)

    Google Scholar 

  15. Grasman, J.: On the birth of boundary layers. Mathematical Centre Tracts 36. Mathematisch Centrum, Amsterdam (1971)

    Google Scholar 

  16. Grenier, E.: Oscillatory perturbations of the Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées 76, 477–498 (1997)

    Article  Google Scholar 

  17. Mariano, Global Surface Velocity Analysis (MGSVA) 1.0, US Coast Guard’s (1995)

    Google Scholar 

  18. Pedlosky, J.: Geophysical fluid dynamics. Springer-Verlag, New York (1979)

    Book  Google Scholar 

  19. Pedlosky, J.: Ocean Circulation Theory. Springer-Verlag, Berlin Heidelberg (1996)

    Book  Google Scholar 

  20. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Ribung. Verh. III. Intern. Math. Kong., pp. 484–491. Heidelberg (1905)

    Google Scholar 

  21. Saint-Raymond, L.: Weak compactness methods for singular penalization problems with boundary layers. SIAM J. Math. Anal. 41(1), 153–177 (2009)

    Article  Google Scholar 

  22. Schochet, S.: Fast singular limits of hyperbolic PDEs. Journal of Differential Equations 114, 476–512 (1994)

    Google Scholar 

  23. Thurman, H.Y.: Essentials of oceanography, 5th ed. Prentice Hall, Inc. (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Saint-Raymond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saint-Raymond, L. (2014). The Role of Boundary Layers in the Large-scale Ocean Circulation. In: Celletti, A., Locatelli, U., Ruggeri, T., Strickland, E. (eds) Mathematical Models and Methods for Planet Earth. Springer INdAM Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-02657-2_2

Download citation

Publish with us

Policies and ethics