Skip to main content

Semiparametric Analysis of Treatment Effect via Failure Probability Ratio and the Ratio of Cumulative Hazards

  • Conference paper
  • First Online:
Book cover Contemporary Developments in Statistical Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 68))

  • 1335 Accesses

Abstract

For clinical trials with time-to-event data, statistical inference often employs the constant hazard ratio assumption. When the hazards are possibly non-proportional, the hazard ratio function is often the focus of analysis and it gives a visual inspection of proportionality assumption or how severe of a deviation there is from it. However, the hazard ratio does not directly reflect the treatment effect on survival or event occurrence. The failure probability ratio and the ratio of cumulative hazards are two measures that relate to the survival experience and supplement the hazard ratio in helping assess the treatment effect. For these ratios, although simple nonparametric estimators are available through the Nelson-Aalen estimator of the cumulative hazard and the Kaplan–Meier estimator of the survival function, often they are not very smooth and can be quite unstable near the beginning of the data range. In this article, point estimates, point-wise confidence intervals and simultaneous confidence intervals of the two ratios are established under a semiparametric model that can be used in a sufficiently wide range of applications. These methods are illustrated for data from two clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen OO (1975) Statistical inference for a family of counting processes. PhD thesis. University of California, Berkeley

    Google Scholar 

  • Bie O, Borgan O, Liestøl lK (1987) Confidence intervals and confidence bands for the cumulative hazard rate function and their small-sample properties. Scand J Stat 14:221–233

    MATH  Google Scholar 

  • Breslow N, Elder L, Berger L (1984). A two sample censored-data rank test for acceleration. Biometrics 40, 1042–1069

    Google Scholar 

  • Cheng SC, Wei LJ, Ying Z (1997) Predicting survival probabilities with semiparametric transformation models. J Am Stat Assoc 92:227–235

    Article  MATH  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life-tables (with Discussion). J R Statist Soc B 34:187–220

    MATH  Google Scholar 

  • Dabrowska DM, Doksum KA, Song J (1989) Graphical comparison of cumulative hazards for two populations. Biometrika 76:763–773

    Article  MATH  MathSciNet  Google Scholar 

  • The Digitalis Investigation Group (1997) The effect of Digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533

    Article  Google Scholar 

  • Dong B, Matthews DE (2012) Empirical likelihood for cumulative hazard ratio estimation with covariate adjustment. Biometrics 68:408–418

    Article  MATH  MathSciNet  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd ed. Wiley, New York

    Book  Google Scholar 

  • Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Wei LJ, Ying Z (1993) Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80:557–572

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Fleming TR, Wei LJ (1994) Confidence bands for survival curves under the proportional hazards model. Biometrika 81:73–81

    Article  MATH  MathSciNet  Google Scholar 

  • Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, Trevisan M, Black HR, Heckbert SR, Detrano R, Strickland OL, Wong ND, Crouse JR, Stein E, Cushman M, for the Women’S Health Initiative Investigators (2003) Estrogen plus progestin and the risk of coronary heart disease. New Eng J Med 349:523–534

    Article  Google Scholar 

  • McKeague IW, Zhao Y (2002) Simultaneous confidence bands for ratios of survival functions via empirical likelihood. Stat Probabil Lett 60:405–415

    Article  MATH  MathSciNet  Google Scholar 

  • Nair VN (1984) Confidence bands for survival functions with censored data: a comparative study. Technometrics 26:265–275

    Article  Google Scholar 

  • Nelson W (1969) Hazard plotting for incomplete failure data. J Qual Technol 1:27–52

    Google Scholar 

  • Parzen MI, Wei LJ, Ying Z (1997) Simultaneous confidence intervals for the difference of two survival functions. Scand J Stat 24:309–314

    Article  MATH  MathSciNet  Google Scholar 

  • Peng L, Huang Y (2007) Survival analysis with temporal covariate effects. Biometrika 94:719–733

    Article  MATH  MathSciNet  Google Scholar 

  • Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward

    MATH  Google Scholar 

  • Prentice RL, Langer R, Stefanick ML, Howard BV, Pettinger M, Anderson G, Barad D, Curb JD, Kotchen J, Kuller L, Limacher M, Wactawski-Wende J, for the Women’S Health Initiative Investigators (2005) Combined postmenopausal hormone therapy and cardiovascular disease: toward resolving the discrepancy between observational studies and the women’s health initiative clinical trial. Amer J of Epi 162:404–414

    Google Scholar 

  • Schaubel DE, Wei G (2011) Double inverse-weighted estimation of cumulative treatment effects under nonproportional hazards and dependent censoring. Biometrics 67:29–38

    Article  MATH  MathSciNet  Google Scholar 

  • Tian L, Zucker D, Wei LJ (2005) On the Cox model with time-varying regression coefficients. J Am Statist Assoc 100:172–183

    Article  MATH  MathSciNet  Google Scholar 

  • Tong X, Zhu C, Sun J (2007) Semiparametric regression analysis of two-sample current status data, with applications to tumorigenicity experiments. Canad J Statist 35:575–584

    Article  MATH  MathSciNet  Google Scholar 

  • Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. J Amer Med Assoc 288:321–333

    Article  Google Scholar 

  • Yang S, Prentice RL (2005) Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika 92:1–17

    Article  MATH  MathSciNet  Google Scholar 

  • Yang S, Prentice RL (2011) Estimation of the 2-sample hazard ratio function using a semiparametric model. Biostatistics 12:354–368

    Article  Google Scholar 

Download references

Acknowledgement

I would like to thank the reviewers and the editor for helpful comments and suggestions, which led to an improved version of the manuscript. This chapter is dedicated to my mentor Dr. Hira Koul. I am greatly indebted to Dr. Koul for his guidance, advice, and encouragement in the last 30 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang .

Editor information

Editors and Affiliations

Appendices

Appendix A: Consistency

The following regularity conditions will be assumed throughout the Appendices:

  • Condition 1. \(\lim \frac{n_1}{n}=\rho \in (0,1).\)

  • Condition 2. The survivor function G i of C i given Z i is continuous and satisfies

    $$\begin{aligned} \frac{1}{n}\sum _{i\leq n_1} G_i(t) \rightarrow \Gamma_1,\ \frac{1}{n}\sum _{i> n_1} G_i(t) \rightarrow \Gamma_2,\end{aligned}$$

    uniformly for \(t\leq \tau\), for some Γ1, Γ2, and \(\tau<\tau_0\) such that \(\Gamma_j(\tau)>0,\ j=1,2.\)

  • Condition 3. The survivor functions S C and S T are absolutely continuous and \(S_C(\tau)>0\).

Under these conditions, the strong law of large numbers implies that (21.3) is satisfied.

For \(t\leq \tau,\) define

$$\begin{aligned} L(t)&= \Gamma_1 S_C+ \Gamma_2 S_T,\\ U_j(t;{\bf b})&= {\int^t_0} \Gamma_1 dF_C+ {\rm exp}\Big(-b_j\Big) {\int^t_0} \Gamma_2dF_T, j= 1,2,\\ \Lambda_j(t;{\bf b})&={\int^t_0} \frac{dU_j(s;{\bf b})}{L(s)},\ j= 1,2,\\ P(t;{\bf b})&={\rm exp}\{-\Lambda_2(t;{\bf b})\}, R(t;{\bf b})=\frac{1}{P(t;{\bf b})}{\int^t_0} P(s;{\bf b})d\Lambda_1(s;{\bf b}),\\ f_j^0(t;{\bf b})&=\frac{{\rm exp}(-b_j)R^{j-1}(t;{\bf b})}{{\rm exp}(-b_1)+{\rm exp}(-b_2)R(t;{\bf b})},\ j=1,2,\\ m_j({\bf b})&= \left\{{\int^{\tau}_0} f_j^0 \Gamma_2(t)dF_T(t) -\!{\int^{\tau}_0} \frac{f_j^0\Gamma_2(t) S_T(t)dR(t;{\bf b})} {{\rm exp}\Big(-b_1\Big) +{\rm exp}\Big(-b_2\Big)R(t;{\bf b})}\right\},\ j\!=\!1,2,\end{aligned}$$

and \(m({\bf b})=\Big(m_1({\bf b}),m_2({\bf b})\Big)^\prime\). We will also assume

  • Condition 4. The function \(m({\bf b})\) is non-zero for \(b\in \cal{B}-\{{\bf \beta}\}\), where \(\cal{B}\) is a compact neighborhood of \({\bf \beta}\).

Theorem 1.

Suppose that Conditions 1 ∼ 4 hold. Then, (i) the zero \({\hat{\bf \beta}}\) of \(Q({\bf b})\) in \(\cal{B}\) is strongly consistent for \({\bf \beta}\) ; (ii) \(\widehat{RR}(t)\) is strongly consistent for \(RR(t)\) , uniformly for \(t\in [0, \tau]\) , and \(\widehat{\textit{CHR}}(t)\) is strongly consistent for \(\textit{CHR}(t)\) , uniformly on \(t\in [0, \tau]\) ; (iii) \(\hat{\Omega}\) converges almost surely to a limiting matrix \(\Omega^*\).

Proof.

Under Conditions \(1 \sim 3\), the limit of \({\sum^n_{i=1}} I\Big(X_i\geq t\Big)/n\) is bounded away from zero on \(t\in [0,\tau].\) Thus, it can be shown that, with probability 1,

$$\frac{{\sum^n_{i=1}} \delta_i e^{-b_jZ_i}I\Big(X_i=t\Big)} {{\sum^n_{i=1}} \delta_i I\Big(X_i\geq t\Big)}\rightarrow 0,\ j=1,2, | \Delta{\hat{P}}(t;{\bf b})|\rightarrow 0,\ | \Delta{\hat{R}}(t;{\bf b})|\rightarrow 0,$$
(21.16)

uniformly for \(t\in [0,\tau]\) and \(b\in \cal{B},\) where Δ indicates the jump of the function in t.

Define the martingale residuals

$$\begin{aligned} {\hat{M}}_{i}(t;{\bf b})=\delta_iI\Big(X_i\leq t\Big)-{\int^t_0} I\Big(X_i\geq s\Big) \frac{{\hat{R}}(ds;{\bf b})}{e^{-b_1Z_i}+e^{-b_2Z_i} {\hat{R}}(s;{\bf b})}, 1\leq i \leq n.\end{aligned}$$

From (21.16) and the fundamental theorem of calculus, it can be shown that, with probability 1,

$$Q({\bf b})={\sum^n_{i=1}} {\int^{\tau}_0} \Big\{f_{i}(t;{\bf b})+o(1)\Big\}{\hat{M}}_i(dt;{\bf b}),$$
(21.17)

uniformly in \(t\leq \tau\), \(b\in \cal{B}\) and \(i\leq n\), where \(f_i=(f_{1i},f_{2i})^T\), with

$$\begin{aligned} f_{1i}(t;{\bf b})=\frac{Z_ie^{-b_1Z_i}}{e^{-b_1Z_i}+ e^{-b_2Z_i}{\hat{R}}(t;{\bf b})},\ f_{2i}(t;{\bf b})=\frac{Z_ie^{-b_2Z_i}{\hat{R}}(t;{\bf b})}{e^{-b_1Z_i}+ e^{-b_2Z_i}{\hat{R}}(t;{\bf b})}.\end{aligned}$$

From the strong law of large numbers (Pollard 1990, p. 41) and repeated use of Lemma A1 of Yang and Prentice (2005), one obtain, with probability 1,

$$ {\hat{P}}(t;{\bf b})\rightarrow{\hat{P}}(t;{\bf b}),\ {\hat{R}}(t;{\bf b})\rightarrow R(t;{\bf b}),\ Q({\bf b})/n \rightarrow m({\bf b}),$$
(21.18)

uniformly in \(t\leq \tau\) and \({\bf b} \in \cal{B}\). From these results and Condition 4, one obtains the strong consistency of \(\widehat{RR}(t)\) and \(\widehat{\textit{CHR}}(t)\), and almost sure convergence of \(\hat{\Omega}\).

Appendix B: Weak Convergence

Let \(\xi_0(t)=1+ R(t), \xi(t)=e^{-{\beta}_1}+e^{-{\beta}_2} R(t),\hat{\xi}_0(t)=1+ {\hat{R}}(t;{\bf \beta}), \hat{\xi}(t)=e^{-{\beta}_1}+e^{-{\beta}_2} {\hat{R}}(t;{\bf \beta}),\) and define

$$\begin{aligned} \nonumber K_1(t)&=\sum_{i\leq n_1}I(X_i\geq t),\ K_2(t)=\sum_{i>n_1}I(X_i\geq t),\\ \nonumber H(t)&=\frac{1}{\hat{\xi} (t)} (e^{-{\beta}_1}, e^{-{\beta}_2} {\hat{R}}(t;{\bf \beta}))^T,\\ J(t)&= \int^\tau_t \frac{H(s)K_1(s)K_2(s)}{\hat{\xi} (s){\hat{P}(s;{\bf \beta})}} \left(\frac{e^{-{\beta}_2}}{\xi(s)}-\frac{1}{\xi_0(s)}\right)dR(s).\end{aligned}$$

Similarly, to the proof of Theorem 1, it can be shown that, with probability 1,

$$ Q({\bf \beta})= \sum_{i\leq n_1}\int_0^\tau \{\mu_1(t) +o(1)\} dM_i(t) +\sum_{i>n_1}\int_0^\tau \Big\{\mu_2(t) +o(1)\Big\} dM_i(t),$$
(21.19)

uniformly in \(t\leq \tau\) and \(i\leq n\), where

$$\begin{aligned} \mu_1 (t)& =-\frac{\hat{\xi}_0(t)H(t)K_2(t)}{\hat{\xi}(t)K(t)} +\frac{\hat{\xi}_0(t)\hat{P}_{-}(t;{\bf \beta})}{K} J(t), \nonumber\\ \mu_2(t)& = H(t) \frac{K_1(t)}{K(t)} + \frac{\hat{\xi}(t) \hat{P}_{-}(t;{\bf \beta})} {K(t)} J(t),\end{aligned}$$
(21.20)
$$\begin{aligned} M_{i}(t)&=\delta_iI(X_i\leq t)-{\int^t_0} I(X_i\geq s) \frac{dR(s)}{e^{-{\beta}_1Z_i}+ e^{-{\beta}_2Z_i}R(s)},\ i=1,\dots,n.\nonumber\end{aligned}$$

By Lemma A3 of Yang and Prentice (2005),

$$ \sqrt{n}({\hat{R}}(t;{\bf \beta})-R(t))=\frac{1}{\sqrt{n}{\hat{P}}(t;{\bf \beta})} \left(\sum_{i\leq n_1}\int_0^t \nu_1dM_i +\sum_{i>n_1}\int_0^t \nu_2dM_i\right)$$
(21.21)

where

$$\begin{aligned}\nu_1(t)&=\frac{n\xi_0(t) {\hat{P}}_-(t;{\bf \beta})}{K(t)},\ \nu_2(t)=\frac{n\xi(t){\hat{P}}_-(t;{\bf \beta})}{K(t)}.\end{aligned}$$

Define

$$\begin{aligned} A_{RR}(t)&=\!\left(\frac{\hat{S}_T(t)}{\hat{F}_C(t)\hat{\xi}(t)}- \frac{\hat{F}_T(t)\hat{S}_C^2(t)}{\hat{F}^2_C(t)} \right)\! \frac{\partial{\hat{R}}(t;{\bf \beta})} {\partial{\bf \beta}} +\frac{\hat{S}_T(t)}{\hat{F}_C(t)} \left(\frac{R(t)}{\xi(t)}, {\Lambda}_T(t)-\frac{R(t)}{\xi(t)}\right)^T\!,\\ B_{RR}(t)&= \frac{1}{{\hat{P}}(t;{\bf \beta})} \left(\frac{\hat{S}_T(t)}{\hat{F}_C(t)\hat{\xi}(t)}- \frac{\hat{F}_T(t)\hat{S}_C^2(t)}{\hat{F}^2_C(t)}\right),\\ A_{\textit{CHR}}(t)&=\!\left(\frac{1}{\Lambda_C(t)\hat{\xi}(t)}- \frac{\Lambda_T(t)\hat{S}_C(t)}{\Lambda_C^2(t)} \right)\! \frac{\partial{\hat{R}}(t;{\bf \beta})} {\partial{\bf \beta}} +\frac{1}{\Lambda_C(t)} \!\left(\frac{R(t)}{\xi(t)}, {\Lambda}_T(t)-\frac{R(t)}{\xi(t)}\right)^T\!\!\!,\\ B_{\textit{CHR}}(t)&=\frac{1}{{\hat{P}}(t;{\bf \beta})} \left(\frac{1}{\Lambda_C(t)\hat{\xi}(t)}- \frac{\Lambda_T(t)\hat{S}_C(t)}{\Lambda_C^2(t)}\right).\end{aligned}$$

For \(A_{RR}(t),\ B_{RR}(t),\ A_{\textit{CHR}}(t),\ B_{\textit{CHR}}(t),\ mu_1(t), \mu_2(t), \nu_1(t),\ \nu_2(t)\), let \(A_{RR}^*(t),\ B_{RR}^*(t),{\ldots}\) etc. be their almost sure limit. In addition, let L j be the almost sure limit of \(K_j/n,\ j=1, 2.\) For \(0\leq s, t<\tau,\) let

$$\begin{aligned} \nonumber&\sigma_{RR}(s,t)\nonumber\\&= A_{RR}^{*T}(s) \Omega^* \left(\int^\tau_0 \frac{\mu_1^*\mu_1^{*T}} {1+R} L_1dR + \int^\tau_0 \frac{\mu_2^*\mu_2^{*T}} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right) \Omega^{*T} D^*(t)\nonumber\\&\quad+ B_{RR}^*(s)B_{RR}^*(t) \left(\int^s_0 \frac{\nu_1^{*2}} {1+R} L_1dR + \int^s_0 \frac{\nu_2^{*2}} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right)\nonumber\\&\quad+ B_{RR}^*(t) A_{RR}^{*T}(s)\Omega^* \left(\int^t_0 \frac{\mu_1^*\nu_1^*} {1+R} L_1dR + \int^t_0 \frac{\mu_2^*\nu_2^*} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right)\\&\quad +B_{RR}^*(s) A_{RR}^{*T}(t) \Omega^* \left(\int^s_0 \frac{\mu_1^*\nu_1^*} {1+R} L_1dR + \int^s_0 \frac{\mu_2^*\nu_2^*} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right),\end{aligned}$$
(21.22)

and

$$\begin{aligned} \nonumber&\sigma_{\textit{CHR}}(s,t)\nonumber\\=& A_{\textit{CHR}}^{*T}(s) \Omega^* \left(\int^\tau_0 \frac{\mu_1^*\mu_1^{*T}} {1+R} L_1dR + \int^\tau_0 \frac{\mu_2^*\mu_2^{*T}} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right) \Omega^{*T} D^*(t)\nonumber\\&+ B_{\textit{CHR}}^*(s)B_{\textit{CHR}}^*(t) \left(\int^s_0 \frac{\nu_1^{*2}} {1+R} L_1dR + \int^s_0 \frac{\nu_2^{*2}} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right)\nonumber\\&+ B_{\textit{CHR}}^*(t) A_{\textit{CHR}}^{*T}(s)\Omega^* \left(\int^t_0 \frac{\mu_1^*\nu_1^*} {1+R} L_1dR + \int^t_0 \frac{\mu_2^*\nu_2^*} {e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right)\\&+B_{\textit{CHR}}^*(s) A_{\textit{CHR}}^{*T}(t) \Omega^* \left(\int^s_0 \frac{\mu_1^*\nu_1^*} {1+R} L_1dR + \int^s_0 \frac{\mu_2^*\nu_2^*}{e^{-{\beta}_1}+e^{-{\beta}_2}R}L_2dR\right).\end{aligned}$$
(21.23)

For \(A_{RR}(t),\ B_{RR}(t), {\ldots}\), etc. define corresponding estimator \(\hat{B}_{RR}(t), \hat{A}_{RR}(t),\) … by replacing \({\bf \beta}\) with \({\hat{\bf \beta}}\), R(t) with \({\hat{R}}(t;{\hat{\bf \beta}})\). Defince \(\hat{\sigma}_{RR}(s,t)\) and \(\hat{\sigma}_{\textit{CHR}}(s,t)\) by repalcing \(B_{RR}(t),\ A_{RR}(t)\), \(\mu_1(t)\), \(\mu_2(t)\), \(\nu_1(t),\ \nu_2(t)\),… in \(\sigma_{RR}(s,t)\) and \(\sigma_{\textit{CHR}}(s,t)\) by \(\hat{B}_{RR}(t), \hat{A}_{RR}(t), {\ldots}\) etc.

Theorem 2.

Suppose that Conditions 1 ∼ 4 hold and that the matrix \(\Omega^*\) is non-singular. Then, (i) U n is asymptotically equivalent to the process \(\tilde{U}_n\) in (21.6) which converges weakly to a zero-mean Gaussian process \(U^*\) on \([0,\tau]\) , with covariance function \(\sigma_{RR}(s,t)\) in (21.22). \(\sigma_{RR}(s,t)\) can be consistently estimated by \(\hat{\sigma}_{RR}(s,t).\) In addition, \(\hat{U}_n(s)\) given the data converges weakly to the same limiting process \(U^*\) . (ii) \(V_n(t)\) is asymptotically equivalent to the process \(\tilde{V}_n\) in (21.7) which converges weakly to a zero-mean Gaussian process \(V^*\) on \([0,\tau]\) , with covariance function \(\sigma_{\textit{CHR}}(s,t)\) in (21.23). \(\sigma_{\textit{CHR}}(s,t)\) can be consistently estimated by \(\hat{\sigma}_{\textit{CHR}}(s,t).\) In addition, \(\hat{V}_n(s)\) given the data converges weakly to the same limiting process \(V^*\).

Proof.

(i) As in the proof for Theorem A2 (ii) in Yang and Prentice (2005), by the strong embedding theorem and (21.19), \(Q({\bf \beta})/\sqrt{n}\) can be shown to be asymptotically normal. Now Taylor series expansion of \(Q({\bf b})\) around \({\bf \beta}\) and the non-singularity of \(\Omega^*\) imply that \(\sqrt{n}\Big({\hat{\bf \beta}}-{\bf \beta}\Big)\) is asymptotically normal. From the \(\sqrt{n}\)- boundedness of \({\hat{\bf \beta}}\),

$$\begin{aligned} \sqrt{n}\Big(\hat{R}\Big(t;{\hat{\beta}}\Big) -{\hat{R}}\Big(t;{\beta}\Big)\Big) =\frac{\partial R(t;\beta)}{\partial \beta} \sqrt{n} \Big({\hat{\beta}} -{\beta}\Big)+o_p(1),\end{aligned}$$

uniformly in \(t\leq \tau.\) These results, some algebra and Taylor series expansion together show that U n is asymptotically equivalent to \(\tilde{U}_n\). Similarly, to the proof of the asymptotic normality of \(Q({\bf \beta})/\sqrt{n}\), one can show that \(\tilde{U}_n\) converges weakly to a zero-mean Gaussian process. Denote the limiting process by \(U^*\). From the martingale integral representation of \(\tilde{U}_n\), it can be shown that the covariation process of \(U^*\) is given by \(\sigma(s,t)\) in (21.22). The consistency of \(\hat{\sigma}_{RR}(s,t)\) can be shown similarly to the proof of Theorem 1.

By checking the tightness condition and the convergence of the finite-dimensional distributions, it can be shown that \(\hat{U}_n(s)\) given the data also converges weakly to \(U^*\).

(ii) The assertions on V n , \(\tilde{V}_n\), etc. can be proved similarly to the case for U n , \(\tilde{U}_n\), etc. in (i).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, S. (2014). Semiparametric Analysis of Treatment Effect via Failure Probability Ratio and the Ratio of Cumulative Hazards. In: Lahiri, S., Schick, A., SenGupta, A., Sriram, T. (eds) Contemporary Developments in Statistical Theory. Springer Proceedings in Mathematics & Statistics, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-319-02651-0_21

Download citation

Publish with us

Policies and ethics