Skip to main content

Underactuated Mechanical Systems from the Lagrangian Formalism

  • Chapter

Abstract

When one is interested in controlling systems for which their nonlinear dynamics cannot be neglected, it is well-known, since the time of Poincaré, that these nonlinear systems have extremely complex behaviors so that the application of a particular design method in control theory might not be suitable. It is therefore necessary to clarify, somehow or other, the class of systems we are interested in.

In this chapter, we are interested in the class of UMSs that are derived from the Lagrangian formalism. As a result, the first part of this chapter is dedicated to an introduction on Lagrangian systems. After that, the notion of underactuation is explained. Then, we give the definition of non-holonomic constraints as well as highlighting the differences and subtleties that exist between underactuation and non-holonomy. We demonstrate why the control of UMSs leads to challenging theoretical problems, some of which are still open till now. Finally, the end of this chapter is dedicated to the presentation of the models of some UMSs.

…Happy families are all alike, every unhappy family is unhappy in its own way.

Léon Tolstoï, Anna Karenina

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Holonomic: Greek word that signifies whole, integer.

  2. 2.

    Translational Oscillator Rotational Actuator.

References

  1. N.P. Aneke, Control of underactuated mechanical systems. Ph.D. thesis, Technishe Universiteit Eidhoven, 2003

    Google Scholar 

  2. K.J. Astrom, K. Furuta, Swining up a pendulum by energy control. Automatica 36, 287–295 (2000)

    Article  MathSciNet  Google Scholar 

  3. M. Bennani, P. Rouchon, Robust stabilization of flat and chained systems, in Proc. European Control Conf. (1995), pp. 1781–1786

    Google Scholar 

  4. A.M. Bloch, J. Baillieul, Nonholonomic Mechanics and Control (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  5. A.M. Bloch, M. Reyhanoglu, N.H. McClamroch, Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Autom. Control 37(11), 1746–1757 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Block, K.J. Astrom, M.W. Spong, The Reaction Wheel Pendulum (Morgan and Claypool, San Rafael, 2007)

    Google Scholar 

  7. S. Bortoff, M.W. Spong, Pseudolinearization of the Acrobot using spline functions, in Proc. IEEE Conf. on Decision and Control, Tuscan (1992), pp. 593–598

    Google Scholar 

  8. R.W. Brockett, Asymptotic Stability and Feedback Stabilization (Birkhäuser, Basel, 1983)

    Google Scholar 

  9. J.M. Coron, B. d’Andréa-Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) (1992), pp. 413–418

    Google Scholar 

  10. I. Fantoni, R. Lozano, Nonlinear Control for Underactuated Mechanical Systems (Springer, Berlin, 2002)

    Book  Google Scholar 

  11. G.O. Gantmacher, Lectures in Analytical Mechanics (Mir, Moscow, 1970)

    Google Scholar 

  12. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  13. J. Hauser, S. Sastry, P. Kokotović, Nonlinear control via approximate input-output linearization. IEEE Trans. Autom. Control 37(3), 392–398 (1992)

    Article  Google Scholar 

  14. E. Jarzebowska, Stabilizability and motion tracking conditions for mechanical nonholonomic control systems, in Mathematical Problems in Engineering (2007)

    Google Scholar 

  15. I. Kolmanovsky, N.H. Mcclamroch, Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  16. A.D. Mahindrakar, R.N. Banavar, A swinging up of the Acrobot based on a simple pendulum strategy. Int. J. Control 78(6), 424–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.T. M’Closkey, R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Meisel, Principles of Electromechanical Energy Conversion (John Wiley and Sons, New York, 1959)

    Google Scholar 

  19. P. Morin, J.B. Pomet, C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Control Optim. 38, 22–49 (1997)

    Article  MathSciNet  Google Scholar 

  20. R.M. Murray, S. Sastry, Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38(5), 700–716 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Nakamura, W. Yoshihiko, O.J. Sordalen, Design and control of the nonholonomic manipulator. IEEE Trans. Robot. Autom. 17(1), 48–59 (2001)

    Article  Google Scholar 

  22. J.I. Neimark, F.A. Fufaev, Dynamics of Nonholonomic Systems (AMS, Providence, 1972)

    MATH  Google Scholar 

  23. R. Olfati Saber, Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusetts Institute of Technology, Department Electrical Engineering and Computer Science, 2001

    Google Scholar 

  24. G. Oriolo, Y. Nakamura, Control of mechanical systems with second order nonholonomic constraints: underactuated manipulators, in Proc. IEEE Conf. on Decision and Control, UK (1991), pp. 2398–2403

    Google Scholar 

  25. J.B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Syst. Control Lett. 18, 467–473 (1992)

    Article  MathSciNet  Google Scholar 

  26. M. Reyhanoglu, A. Van der Schaft, N.H. McClamroch, I. Kolmanovsky, Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)

    Article  MATH  Google Scholar 

  27. M. Reyhanoglu, S. Cho, N.H. McClamroch, I. Kolmanovsky, Discontinuous feedback control of a planar rigid body with an unactuated internal degree of freedom, in Proc. IEEE Conf. on Decision and Control, Florida (1998), pp. 433–438

    Google Scholar 

  28. C. Samson, K. Ait-Abderrahim, Feedback control of a nonholonomic wheeled cart in Cartesian space, in Proc. IEEE Conf. on Robotics and Automation (1991), pp. 1136–1141

    Google Scholar 

  29. D. Seto, J. Baillieul, Control problems in super articulated mechanical systems. IEEE Trans. Autom. Control 39(12), 2442–2453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Sordalen, O. Egeland, Exponential stabilization of chained nonholonomic systems. IEEE Trans. Autom. Control 40(1), 35–49 (2001)

    Article  MathSciNet  Google Scholar 

  31. M.W. Spong, Underactuated Mechanical Systems (Springer, Berlin, 1997)

    Google Scholar 

  32. M.W. Spong, D.J. Block, The Pendubot: a mechatronic system for control research and education, in Proc. of the 34th IEEE Conf. on Decision and Control, New Orleans (1995)

    Google Scholar 

  33. M.W. Spong, M. Vidyasagar, Robot Dynamics and Control (John Wiley and Sons, New York, 1989)

    Google Scholar 

  34. M.W. Spong, P. Corke, R. Lozano, Nonlinear control of the inertia wheel pendulum. Automatica 37, 1845–1851 (1999)

    Article  Google Scholar 

  35. C.J. Wan, D.S. Bernstein, V.T. Coppola, Global stabilization of the oscillating eccentric rotor. Nonlinear Dyn. 10, 49–62 (1996)

    Article  Google Scholar 

  36. J.T.Y. Wen, Control of Nonholonomic Systems (CRC Press/IEEE Press, Boca Raton/Los Alamitos, 1996)

    Google Scholar 

  37. D.C. White, H.H. Woodson, Electromechanical Energy Conversion (John Wiley and Sons, New York, 1959)

    Google Scholar 

  38. K.Y. Wichlund, O.J. Sordalen, O. Egeland, Control of vehicles with second-order nonholonomic constraints, in Proc. European Control Conf. (1995), pp. 3086–3091

    Google Scholar 

  39. H. Yu, Y. Liu, T. Yang, Tracking control of a pendulum-driven cart-pole underactuated system, in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Japan (2007), pp. 2425–2430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choukchou-Braham, A., Cherki, B., Djemaï, M., Busawon, K. (2014). Underactuated Mechanical Systems from the Lagrangian Formalism. In: Analysis and Control of Underactuated Mechanical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02636-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02636-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02635-0

  • Online ISBN: 978-3-319-02636-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics