Skip to main content

Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks

  • Chapter
Memristor Networks

Abstract

In this paper, we design a cellular automaton and a discrete-time cellular neural network (DTCNN) using nonlinear passive memristors. They can perform a number of applications, such as logical operations, image processing operations, complex behaviors, higher brain functions, etc. By modifying the characteristics of nonlinear memristors, the memristor DTCNN can perform almost all functions of memristor cellular automaton. Furthermore, it can perform more than one function at the same time, that is, it allows multitasking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A time-frame is used to identify a start and end of a set of current pulses.

  2. 2.

    All evolution images and processed images in this paper are not obtained by the real memristor cellular automaton circuits, but by computer simulations.

  3. 3.

    Gaussian noise has a probability density function of the normal distribution (Gaussian distribution).

  4. 4.

    We can obtain Eqs. (110 ) and (111 ) using the approximation: \(\mathit{floor} ( \frac{255}{9} |q| ) \approx \mathit{floor} ( 28 |q| ) \).

  5. 5.

    10-gradations: {0,28,56,84,112,140,168,196,224,252} levels.

  6. 6.

    During the period [nT,nT+Δt], a positive current read pulse I p with a height of 1 is applied into the memristor.

  7. 7.

    For more details, see “Bak-Tang-Wiesenfeld sandpile” in Wikipedia, the free encyclopedia.

References

  1. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O.: CNN: A Paradigm for Complexity. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  3. Chua, L.O.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, vols. I–II. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  4. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  5. Chua, L.O., Roska, T.: Cellular Neural Networks and Visual Computing. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  6. Gardner, M.: Mathematical games—the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223, 120-123 (1970)

    Article  Google Scholar 

  7. Itoh, M., Chua, L.O.: Designing CNN genes. Int. J. Bifurc. Chaos 13(10), 2739–2824 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Itoh, M., Chua, L.O.: Advanced image processing cellular neural networks. Int. J. Bifurc. Chaos 17(4), 1109–1150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Itoh, M., Chua, L.O.: Imitation of visual illusions via OpenCV and CNN. Int. J. Bifurc. Chaos 18(12), 3551–3609 (2008)

    Article  MathSciNet  Google Scholar 

  11. Itoh, M., Chua, L.O.: Difference equations for cellular automata. Int. J. Bifurc. Chaos 19(3), 805–830 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, R.C.: Will memristors prove irresistible? EE Times 1538, 30–34 (2008)

    Google Scholar 

  13. Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (1992)

    Book  Google Scholar 

  14. Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 365202 (2007)

    Article  Google Scholar 

  15. Strukov, D.B., Snider, G.S., Stewart, G.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  16. Tour, J.M., He, T.: The fourth element. Nature 453, 42–43 (2008)

    Article  Google Scholar 

  17. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by ONR grants No. N00014-07-1-0350 and N00014-09-1-0411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Itoh, M., Chua, L. (2014). Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics