Skip to main content

Solid-State Memcapacitors and Their Applications

  • Chapter
Memristor Networks

Abstract

This chapter introduces the concept of a memcapacitor, and reviews different approaches to its physical realization. Also, practical constraints for their usage are assessed. Because of their compatibility with traditional circuit integration technologies, two approaches are particularly interesting: the ferroelectric capacitor and the memcapacitor constructed by appending metal-insulator-metal (MIM) capacitor with a memristive switching layer. Ferroelectric capacitors have already been in use for many years so the properties of this technology are relatively well researched. The MIM-memristor hybrid structure can take advantage of the vital research on memristive memories. With sufficiently large ratio of the OFF and ON resistances of a memristive material, the compound structure behaves as a memcapacitive system. Finally, the potential of memcapacitors for memory and logic applications as well as for artificial neural networks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biolek, D., Biolek, Z., Biolkova, V.: SPICE modelling of memcapacitor. Electron. Lett. 46(7), 520–522 (2010). doi:10.1049/el.2010.0358

    Article  Google Scholar 

  2. Biolek, D., Biolek, Z., Biolkova, V.: Behavioral modeling of memcapacitor. Radioengineering 20(1), 228–233 (2011)

    Google Scholar 

  3. Böttger, U., Summerfelt, S.R.: Ferroelectric random access memories. In: Waser, R. (ed.) Nanoelectronics and Information Technology, 2nd edn. Wiley/VCH, New York/Weinheim (2005)

    Google Scholar 

  4. Bratkovski, A.M., Williams, R.S.: Memcapacitor. Patent application available on-line: http://www.freepatentsonline.com/20120039114.pdf (2010)

  5. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  6. Chua, L.O.: Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)

    Article  Google Scholar 

  7. Chua, L.O.: In: Invited Speech at the Memristor and Memristive Systems Symposium, Berkeley, CA (2008)

    Google Scholar 

  8. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  Google Scholar 

  9. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  10. Flak, J.: CNN cell with memcapacitive synapses and threshold control circuit. In: Proc. of the 13th International Workshop on Cellular Nanoscale Networks and Their Applications, CNNA 2012 (2012). doi:10.1109/CNNA.2012.6331414

    Google Scholar 

  11. Flak, J., Laiho, M., Halonen, K.: FG-MOS neuron for binary CNN. In: Proc. of SPIE, vol. 5839 (2005). doi:10.1117/12.608059

    Google Scholar 

  12. Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011). doi:10.1063/1.3640806

    Article  Google Scholar 

  13. Krems, M., Pershin, Y.V., Di Ventra, M.: Ionic memcapacitive effects in nanopores. Nano Lett. 10(7), 2674–2678 (2010)

    Article  Google Scholar 

  14. Laiho, M., Paasio, A., Flak, J., Halonen, K.: Template design for cellular nonlinear networks with 1-bit weights. IEEE Trans. Circuits Syst. I 55(3), 904–913 (2008)

    Article  MathSciNet  Google Scholar 

  15. Martin, D., et al.: Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO2. In: 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 195–198 (2012)

    Chapter  Google Scholar 

  16. Martinez, J., Pershin, Y.V.: Bistable nonvolatile elastic-membrane memcapacitor exhibiting a chaotic behavior. IEEE Trans. Electron Devices 58(6) (2011)

    Google Scholar 

  17. Martinez, J., Di Ventra, M., Pershin, Y.V.: Solid-state memcapacitor, pp. 1–7 (2009). arXiv:0912.4921v2 [cond-mat.mes-hall]

  18. Meade, R.E., Sandhu, G.S.: Memcapacitor device, field effect transistor devices, non-volatile memory arrays, and methods of programming. Patent application available on-line: http://www.freepatentsonline.com/20110199815.pdf (2011)

  19. Pickett, M.D., Borghetti, J., Yang, J.: Two terminal memcapacitive device. Patent application available on-line: http://www.freepatentsonline.com/2012014184.pdf (2011)

  20. Rahaman, S.Z., et al.: Record resistance ratio and bipolar/unipolar resistive switching scenario using novel Cu/GeOx/W memory device. In: Ext Abstracts of the 2011 International Conference on Solid-State Devices and Materials, pp. 1021–1022 (2011)

    Google Scholar 

  21. Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)

    Article  Google Scholar 

  22. Schmid, A., Leblebici, Y.: Realisation of multiple-valued functions using the capacitive threshold logic gate. IEE Proc., Comput. Digit. Tech. 151(6), 435–447 (2004)

    Article  Google Scholar 

  23. Setter, N., et al.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  24. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  25. Sun, J., Lund, E., Maximov, I., Xu, H.Q.: Memristive and memcapacitive characteristics of a Au/Ti-HfO2-InP/GaAs diode. IEEE Electron Device Lett. 32(2), 131–133 (2011)

    Article  Google Scholar 

  26. Ueda, M., et al.: Biologically-inspired learning device using three-terminal ferroelectric memristor. In: 70th Annual Device Research Conference (DRC), pp. 275–276 (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded by the Academy of Finland under grants 140108 and 140290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Flak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flak, J., Poikonen, J.K. (2014). Solid-State Memcapacitors and Their Applications. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics