Skip to main content

Cellular Nonlinear Networks with Memristor Synapses

  • Chapter
Memristor Networks

Abstract

Cellular Nonlinear/Nanoscale Networks (CNNs) that can provide parallel processing in massive scale are known to be suitable for neuromorphic applications such as vision systems. In CNNs, synaptic weights can be calculated by digital or analog multiplications. Though conventional CMOS digital circuits can be used in calculating these multiplications for CNN applications, they occupy very large area and consume a large amount of power, especially when multiplications should be calculated in parallel in massive scale. On the other hand, analog circuits seem to be very attractive for calculating multiplications for CNN applications. One possible approach is to multiply the input current by the programmable resistance of a memristor before applying the resulting voltage to a differential pair for the final voltage-to-current conversion. In this chapter we introduce some analog circuits for CNN applications that use the resistance of a memristor in calculating multiplications. In addition we discuss memristor models and some practical problems in CNN circuits that should be resolved using analog memristor-based implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following memristive systems are referred to as memristor systems, whereas the term ideal memristor is used for systems described by (1).

  2. 2.

    For the sake of brevity the explicit time dependency is dropped where it is not strictly necessary.

  3. 3.

    Note that by defining a time evolution rule for the threshold voltages, it was recently demonstrated [23] that an adaptable threshold voltage-based version of the memristor model from [6] may explain the Suppression Principle [24] of the Spike-Timing-Dependent-Plasticity (STDP) Rule [6], which may occur in the case of triplet spikes.

  4. 4.

    Throughout the paper, unless stated otherwise and without loss of generality, we assume that the doped layer is spatially located to the left of the un-doped layer along the horizontal extension of the nano-film [20], and in this case we assign a value of +1 to the memristor polarity coefficient η (see Eq. (6)).

  5. 5.

    Nonlinear memristors models, including the GBCM model, will be considered in the forthcoming publications.

References

  1. Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O., Kang, S.-M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  4. Vontobel, P.O., Robinett, W., Kuekes, P.J., Stewart, D.R., Straznicky, J., Williams, R.S.: Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20(42), 425204 (2009)

    Article  Google Scholar 

  5. Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I 57(8), 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  6. Zamarreño-Ramos, C., Camuñas-Mesa, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neuromorphic Eng. Front. Neurosci. 5(26), 1–22 (2011)

    Google Scholar 

  7. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nat. Lett. 464(7290), 873–876 (2010)

    Article  Google Scholar 

  8. Xia, Q., Robinett, W., Cumbie, M.W., Banerjee, N., Cardinali, T.J., Yang, J.J., Wu, W., Li, X., Tong, W.M., Strukov, D.B., Snider, G.S., Medeiros-Ribeiro, G., Williams, R.S.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  Google Scholar 

  9. Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: International Symposium on Nanoscale Architecture, pp. 85–92 (2008)

    Google Scholar 

  10. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chua, L.O., Yang, L.: Cellular neural networks applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  12. Domínguez-Castro, R., Espejo, S., Rodríguez-Vázquez, A., Carmona, R.A., Földesy, P., Zarándy, Á., Szolgay, P., Szirányi, T., Roska, T.: A 0.8-μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage. IEEE J. Solid-State Circuits 32, 1013–1026 (1997)

    Article  Google Scholar 

  13. Kim, H., Son, H., Roska, T., Chua, L.O.: High-performance viterbi decoder with circularly connected 2-D CNN unilateral cell array. IEEE Trans. Circuits Syst. I 52, 2208–2218 (2005)

    Article  MathSciNet  Google Scholar 

  14. Zheng, C.-D., Zhang, H., Wang, Z.: Improved robust stability criteria for delayed cellular neural networks via the LMI approach. IEEE Trans. Circuits Syst. II, Express Briefs 57, 41–45 (2010)

    Article  Google Scholar 

  15. Kim, H., Sah, P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)

    Article  Google Scholar 

  16. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighing with a pulse-based memristor circuit. IEEE Trans. Circuits Syst. I 59, 148–158 (2012)

    Article  MathSciNet  Google Scholar 

  17. Joglekar, Y.N., Wolf, S.T.: The elusive memristive element: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)

    Article  MATH  Google Scholar 

  18. Biolek, Z., Biolek, D., Biolková, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  19. Shin, S., Kim, K., Kang, S.-M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Article  Google Scholar 

  20. Corinto, F., Ascoli, A.: A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I 59(11), 2713–2726 (2012)

    Article  MathSciNet  Google Scholar 

  21. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  Google Scholar 

  22. Kvatinski, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  23. Cai, W., Tetzlaff, R.: Advanced memristive model of synapses with adaptive thresholds. In: Proc. IEEE Int. Workshop on Cellular Nanoscale Networks and Their Applications (2012)

    Google Scholar 

  24. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)

    Article  Google Scholar 

  25. Oka, T., Nagaosa, N.: Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95(26), 64031–64034 (2005)

    Google Scholar 

  26. Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C., Widmer, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1), 140 (2000)

    Google Scholar 

  27. Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)

    Article  Google Scholar 

  28. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  Google Scholar 

  29. Ascoli, A., Corinto, F., Tetzlaff, R.: Generalized Memristor Boundary Condition model. IEEE Trans. Circuits Syst. I (2013, under revision)

    Google Scholar 

  30. Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  31. Benderli, S., Wey, T.A.: On spice macromodelling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)

    Article  Google Scholar 

  32. Cadence Design Systems. In: OrCad PSpice User’s Guide. OrCAD, Inc., USA. Available online as PSpice.pdf (1998). http://www.electronics-lab.com/downloads/schematic/013/

  33. Rák, a., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  34. Kavehei, O., Iqbal, A., Kim, Y.S., Eshraghian, K., Al-Sarawi, S.F., Abbott, D.: The fourth element: characteristics, modelling, and electromagnetic theory of the memristor. Proc. R. Soc. A, Math. Phys. Eng. Sci. 466(2120), 2175–2202 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hee Kim, T., Jang, E.Y., Lee, N.J., Choi, D.J., Lee, K.-J., Jang, J.-t., Choi, J.-s., Moon, S.H., Cheon, J.: Nanoparticle assemblies as memristors. Nano Lett. 9(6), 2229–2233 (2009)

    Article  Google Scholar 

  36. Lehtonen, E., Laiho, M.: CNN using memristors for neighborhood connections. In: IEEE Int. Workshop on Cellular Nanoscale Networks and Their Applications, pp. 1–4 (2010)

    Google Scholar 

  37. Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  Google Scholar 

  38. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 40(3), 163–173 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lehtonen, E., Poikonen, J., Laiho, M., Lu, W.: Time-dependence of the threshold voltage in memristive devices. In: IEEE Int. Symp. on Circuits and Systems, pp. 2245–2248 (2011)

    Google Scholar 

  40. Sah, M.Pd., Yang, C., Kim, H., Chua, L.O.: A voltage-mode memristor bridge synaptic circuit with memristor emulators. Sensors 12(3), 3587–3604 (2012)

    Article  Google Scholar 

  41. Strukov, D., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A, Mater. Sci. Process. 94(3), 515–519 (2009)

    Article  Google Scholar 

  42. Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)

    Article  MathSciNet  Google Scholar 

  43. Abdalla, H., Pickett, M.D.: Spice modeling of memristors. In: IEEE Int. Symp. on Circuits and Systems, pp. 1832–1835 (2011)

    Google Scholar 

  44. Pershin, Y.V., Di Ventra, M.: Spice model of memristive devices with threshold. Available online at arXiv (2012). http://lanl.arxiv.org/abs/1204.2600v4

  45. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)

    Article  Google Scholar 

  46. Linares-Barranco, B., Serrano-Gotarredona, T.: Memristance can explain spike-time-dependent-plasticity in neural synapses. Available on-line at Nature Precedings. http://hdl.handle.net/10101/npre.2009.3010.1

  47. Pazienza, G.E., Albo-Canals, J.: Teaching memristors to EE undergraduate students. IEEE Circuits Syst. Mag. 11(4), 36–44 (2011)

    Article  Google Scholar 

  48. Eshraghian, K., Kavehei, O., Cho, K.-R., Chappell, J.M., Iqbal, A., Al-Sarawi, S.F., Abbott, D.: Memristive device fundamentals and modeling: applications to circuits and systems simulation. In: Proceedings of the IEEE, vol. 100, pp. 1991–2007 (2012)

    Google Scholar 

  49. Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits Syst. Mag. (2013). doi:10.1109/MCAS.2013.2256272

    MATH  Google Scholar 

  50. Corinto, F., Ascoli, A., Gilli, M.: PSpice switch-based versatile memristor model. In: Proc. Int. Symp. Circ. Syst. I (2013)

    Google Scholar 

  51. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 1297–1301 (2010)

    Google Scholar 

  52. Jung, C.M., Jo, K.H., Lee, E.S., Vo, H.M., Min, K.S.: Zero-sleep-leakage flip-flop circuit with conditional-storing memristor retention latch. IEEE Trans. Nanotechnol. 11, 360–366 (2012)

    Article  Google Scholar 

  53. Kim, Y.S., Min, K.S.: Synaptic weighting circuits for cellular neural networks. In: International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA2012), Turin, Italy (2012)

    Google Scholar 

  54. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  55. Batas, D., Fiedler, H.: A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)

    Article  Google Scholar 

  56. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  57. Biolek, D., Biolek, Z., Biolkova, V.: Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’. Electron. Lett. 47(25), 1385–1387 (2011)

    Article  Google Scholar 

  58. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  59. Corinto, F., Ascoli, A.: The simplest class of passive Memristor Emulators. IEEE Trans. Circuits Syst. I (2013, submitted)

    Google Scholar 

  60. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)

    Article  Google Scholar 

  61. Chua, L.O.: The fourth element. Proc. IEEE 100(6), 1920–1927 (2012)

    Article  Google Scholar 

  62. Corinto, F., Kang, S.-M., Ascoli, A.: Memristor based neural circuits. In: Int. Symp. Circ. and Syst. (2013)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CRT Foundation, under the project no. 2012.1121 and by the Ministry of Foreign Affairs ”Con il contributo del Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese”.

The CAD tools were supported by the IC Design Education Center (IDEC), Korea. This work was financially supported by NRF-2013K1A3A1A25038533 through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Corinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corinto, F., Ascoli, A., Kim, YS., Min, KS. (2014). Cellular Nonlinear Networks with Memristor Synapses. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics