Skip to main content

Closure Relations for the Depth-Averaged Modelling Equations

  • Chapter
  • First Online:
Shallow Geophysical Mass Flows down Arbitrary Topography

Abstract

The depth-averaged modelling equations in Sects. 4.5, 4.6 apply to flowing materials for which the constitutive properties are only required to satisfy ordering approximations on the components of the stress tensor and on the erosion/deposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The matrix \(({\mathcal D}_{\;\,\beta }^{\alpha })\) in the representation \( {\varvec{D}}_{\mathcal S} ={\mathcal D}_{\;\,\beta }^{\alpha }{\varvec{\tau }}_{\alpha }\otimes {\varvec{\tau }}^{\beta }\) is needed to obtain the eigenvalues and eigenvectors of \( {\varvec{D}}_{\mathcal S}\), and it has been derived in Sect. 3.2, formula (3.53).

  2. 2.

    \( \displaystyle \delta _{\beta \gamma }=\varvec{f}_{\beta }\cdot \varvec{f}_{\gamma }= (C^{\alpha }_{\;\;\beta }{\varvec{\tau }}_{\alpha }) \cdot (C^{\lambda }_{\;\;\gamma }{\varvec{\tau }}_{\lambda })= C^{\alpha }_{\;\;\beta }C^{\lambda }_{\;\;\gamma } M^{-1}_{0\alpha \lambda } \displaystyle \Longleftrightarrow \; \mathbf {I}=\mathbf {C}^T\mathbf {M}_0^{-1}\mathbf {C}\)

    \(\Longleftrightarrow \; \mathbf {C}^{-T}\mathbf {C}^{-1}=\mathbf {M}_0^{-1} \;\Longleftrightarrow \;\mathbf {C}\mathbf {C}^{T}=\mathbf {M}_0{.} \)

  3. 3.

    A symmetric second order tensor \(\varvec{\sigma }\) on a three-dimensional Euclidean real vector space \(\mathcal V\) has the spectral decomposition

    $$\varvec{\sigma }=\lambda _1\varvec{f}_1\otimes \varvec{f}_1+\lambda _2\varvec{f}_2\otimes \varvec{f}_2 +\lambda _3\varvec{f}_3\otimes \varvec{f}_3\,,$$

    where \(\lambda _1,\lambda _2,\lambda _3\) are the (real) eigenvalues of \(\varvec{\sigma }\), and \(\{\varvec{f}_1,\varvec{f}_2,\varvec{f}_3\}\) is an orthonormal basis of eigenvectors for \(\mathcal V\).

  4. 4.

    To avoid this step one could have worked on the form (A.3) of the depth-averaged linear momentum balance equation, written for the case \({\mathcal H }=O(\epsilon ^{\gamma ^{\prime }})\).

References

  1. I. Luca, K. Hutter, Y.C. Tai, C.Y. Kuo, A hierarchy of avalanche models on arbitrary topography. Acta Mech. 205, 121–149 (2009)

    Article  Google Scholar 

  2. A. Voellmy, Über die Zerstörungskraft von Lawinen. Schweiz. Bauzeitung, Jahrg. 73, s. 159–165, 212–217, 246–249, 280–285. English as: On the destructive force of avalanches. 63p. Alta Avalanche Study Center, Transl 2, 1964 (1955)

    Google Scholar 

  3. J.M.N.T. Gray, Y.C. Tai, On the inclusion of a velocity-dependent basal drag in avalanche models. Ann. Glaciol. 26, 277–280 (1998)

    Google Scholar 

  4. S.P. Pudasaini, K. Hutter, Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches (Springer, 2007)

    Google Scholar 

  5. I. Luca, Y.C. Tai, C.Y. Kuo, Modelling shallow gravity-driven solid-fluid mixtures over arbitrary topography. Comm. Math. Sci. 7(1), 1–36 (2009)

    Article  Google Scholar 

  6. C.A. Perazzo, J. Gratton, Thin film of non-Newtonian fluid on an incline. Phys. Rev. 67, 016307 (2003)

    Google Scholar 

  7. C.O. Ng, C.C. Mei, Roll waves on a shallow layer of mud modelled as a power law fluid. J. Fluid. Mech. 263, 151–183 (1994)

    Article  Google Scholar 

  8. X. Huang, M.H. Garcia, A Herschel-Bulkley model for mud flow down a slope. J. Fluid. Mech. 374, 305–333 (1998)

    Article  Google Scholar 

  9. I.R. Ionescu, Viscoplastic shallow flow equations with topography. J. Non-Newtonian Fluid Mech. 193, 116–128 (2013)

    Article  Google Scholar 

  10. I.R. Ionescu, Augmented Lagrangian for shallow viscoplastic flow with topography. J. Comput. Phys. 242, 544–560 (2013)

    Article  Google Scholar 

  11. E. Bovet, B. Chiaia, L. Preziosi, A new model for snow avalanche dynamics based on non-Newtonian fluids. Meccanica 45, 753–765 (2010)

    Article  Google Scholar 

  12. J.M.N.T. Gray, A.N. Edwards, A depth-averaged \(\mu (I)\) rheology for shallow granular free surface flows. J. Fluid Mech. 755, 503–534 (2014)

    Google Scholar 

  13. Y.A. Berezin, L.A. Spodareva, Slow motion of a granular layer on an inclined plane. J. Appl. Mech. Tech. Phys. 39(2), 261–264 (1998)

    Article  Google Scholar 

  14. R.M. Iverson, R.P. Denlinger, Flow of variably fluidised granular masses across three-dimensional terrain. I: Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001)

    Article  Google Scholar 

  15. S.B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid. Mech. 199, 177–215 (1989)

    Article  Google Scholar 

  16. F. Bouchut, M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2(3), 359–389 (2004)

    Article  Google Scholar 

  17. K. Hutter, S.B. Savage, Avalanche dynamics: the motion of a finite mass of gravel down a mountain side, in 5th International Symposium on Landslides, Lausanne (1988), pp. 691–697

    Google Scholar 

  18. S.B. Savage, K. Hutter, The dynamics of avalanches of granular materials from initiation to runout. part I: analysis. Acta Mech. 86, 201–223 (1991)

    Google Scholar 

  19. E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M. Bursik, A. Weber, A model of granular flows over an erodible surface. Discret. Contin. Dynam. Syst., Series B(3), 589 (2003)

    Google Scholar 

  20. M. Naaim, T. Faug, F. Naaim-Bouvet, Dry granular flow modeling including erosion and deposition. Surv. Geophys. 24, 569 (2003)

    Article  Google Scholar 

  21. M.E. Eglit, K.S. Demidov, Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43, 10–23 (2005)

    Article  Google Scholar 

  22. B. Sovilla, S. Margreth, P. Bartelt, On snow entrainment in avalanche dynamics calculations. Cold Reg. Sci. Technol. 47, 69–79 (2007)

    Article  Google Scholar 

  23. Y.C. Tai, C.Y. Kuo, A new model of granular flows over general topography with erosion and deposition. Acta Mech. 199, 71–96 (2008)

    Article  Google Scholar 

  24. Y.C. Tai, Y.C. Lin, A focused view of the behavior of granular flows down a confined inclined chute into horizontal run-out zone. Phys. Fluids 20, 123302 (2008)

    Article  Google Scholar 

  25. Y.C. Tai, C.Y. Kuo, W.H. Hui, An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophys. Astrophys. Fluid Dyn. 106(6), 596–629 (2012)

    Article  Google Scholar 

  26. S. De Toni, P. Scotton, Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Reg. Sci. Technol. 43, 36–48 (2005)

    Article  Google Scholar 

  27. F. Bouchut, E.D. Fernández-Nieto, A. Mangeney, P.-Y. Lagrée, On new erosion models of Savage-Hutter type for avalanches. Acta Mech. 199, 181–208 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Luca .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luca, I., Tai, YC., Kuo, CY. (2016). Closure Relations for the Depth-Averaged Modelling Equations. In: Shallow Geophysical Mass Flows down Arbitrary Topography. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-02627-5_5

Download citation

Publish with us

Policies and ethics