Skip to main content

Developmental Programming and the Placenta: Focusing in on Glucocorticoids

  • Chapter
  • First Online:

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI,volume 12))

Abstract

Fetal glucocorticoid exposure is a key mechanism involved in adverse programming outcomes in the adult. Impairment of fetal growth has predominantly been attributed to direct effects of glucocorticoids on the fetus, prematurely shifting tissue development from a proliferative to a more functionally mature state. However, fetal growth is dependent on a complex interplay of maternal, placental, and fetal endocrine signals, and glucocorticoid-mediated fetal growth retardation is likely also to relate to disturbances in placental growth and function. Regulation of fetal glucocorticoid exposure is achieved by the placental glucocorticoid barrier, which involves glucocorticoid inactivation within the labyrinth zone of the murine placenta by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Overexposure to glucocorticoids or depletion of 11β-HSD2 has a dramatic effect on placental development and function, with a reduction in capillary networks and alterations in nutrient transport. This work highlights the finding that adverse programming effects of glucocorticoids are not exclusively due to direct actions on the fetus but are also a consequence of changes in placental development and function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed A, Singh J, Ahmed A, Singh J, Khan Y, Seshan SV, Girardi G (2010) A new mouse model to explore therapies for preeclampsia. PLoS One 5:13663

    Article  Google Scholar 

  • Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG (2010) The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol 54:525–530

    Article  PubMed Central  PubMed  Google Scholar 

  • Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR (1993) Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341:339–341

    Article  CAS  PubMed  Google Scholar 

  • Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472:347–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown RW, Diaz R, Robson AC, Kotelevtsev YV, Mullins JJ, Kaufman MH, Seckl JR (1996a) The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137:794–797

    CAS  PubMed  Google Scholar 

  • Brown RW, Chapman KE, Kotelevtsev Y, Yau JL, Lindsay RS, Brett L, Leckie C, Murad P, Lyons V, Mullins JJ, Edwards CR, Seckl JR (1996b) Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J 313:1007–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burton PJ, Waddell BJ (1994) 11 β-Hydroxysteroid dehydrogenase in the rat placenta: developmental changes and the effects of altered glucocorticoid exposure. J Endocrinol 143:505–513

    Article  CAS  PubMed  Google Scholar 

  • Burton PJ, Smith RE, Krozowski ZS, Waddell BJ (1996) Zonal distribution of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 messenger ribonucleic acid expression in the rat placenta and decidua during late pregnancy. Biol Reprod 55:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Cottrell EC, Holmes MC, Livingstone DE, Kenyon CJ, Seckl JR (2012) Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J 26:1866–1874

    Article  CAS  PubMed  Google Scholar 

  • Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CH, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI (1998) Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83:2244–2254

    CAS  PubMed  Google Scholar 

  • Dodic M, May CN, Wintour EM, Coghlan JP (1998) An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci 94:149–155

    CAS  PubMed  Google Scholar 

  • Dodic M, Peers A, Coghlan JP, May CN, Lumbers E, Yu Z, Wintour EM (1999) Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin Sci 97:103–109

    Article  CAS  PubMed  Google Scholar 

  • Dodic M, Hantzis V, Duncan J, Rees S, Koukoulas I, Johnson K, Wintour EM, Moritz K (2002a) Programming effects of short prenatal exposure to cortisol. FASEB J 16:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Dodic M, Moritz K, Koukoulas I, Wintour EM (2002b) Programmed hypertension: kidney, brain or both? Trends Endocrinol Metab 13:403–408

    Article  CAS  PubMed  Google Scholar 

  • Edwards CR, Benediktsson R, Lindsay RS, Seckl JR (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341:355–357

    Article  CAS  PubMed  Google Scholar 

  • Ericsson A, Hamark B, Jansson N, Johansson BR, Powell TL, Jansson T (2005) Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. Am J Physiol Regul Integr Comp Physiol 288:R656–R662

    Article  CAS  PubMed  Google Scholar 

  • Gardner DS, Bell RC, Symonds ME (2007) Fetal mechanisms that lead to later hypertension. Curr Drug Targets 8:894–905

    Article  CAS  PubMed  Google Scholar 

  • Gatford KL, Wintour EM, De Blasio MJ, Owens JA, Dodic M (2000) Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin Sci 98:553–560

    Article  CAS  PubMed  Google Scholar 

  • Guzmán C, Cabrera R, Cárdenas M, Larrea F, Nathanielsz PW, Zambrano E (2006) Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J Physiol 572:97–108

    PubMed Central  PubMed  Google Scholar 

  • Hahn T, Barth S, Graf R, Engelmann M, Beslagic D, Reul JM, Holsboer F, Dohr G, Desoye G (1999) Placental glucose transporter expression is regulated by glucocorticoids. J Clin Endocrinol Metab 84:1445–1452

    CAS  PubMed  Google Scholar 

  • Harris A, Seckl J (2010) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59:279–289

    Article  PubMed  Google Scholar 

  • Hewitt DP, Mark PJ, Waddell BJ (2006a) Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology 147:5568–5574

    Article  CAS  PubMed  Google Scholar 

  • Hewitt DP, Mark PJ, Waddell BJ (2006b) Placental expression of peroxisome proliferator-activated receptors in rat pregnancy and the effect of increased glucocorticoid exposure. Biol Reprod 74:23–28

    Article  CAS  PubMed  Google Scholar 

  • Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR (2006) The mother or the fetus? 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J Neurosci 26:3840–3844

    Article  CAS  PubMed  Google Scholar 

  • Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T (2003) Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab 88:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Jensen EC, Gallaher BW, Breier BH, Harding JE (2002) The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol 174:27–36

    Article  CAS  PubMed  Google Scholar 

  • Jones HN, Ashworth CJ, Page KR, McArdle HJ (2006) Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line (BeWo). Am J Physiol Endocrinol Metab 291:E596–E603

    Article  CAS  PubMed  Google Scholar 

  • Kenouch S, Lombes M, Delahaye F, Eugene E, Bonvalet JP, Farman N (1994) Human skin as target for aldosterone: coexpression of mineralocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 79:1334–1341

    CAS  PubMed  Google Scholar 

  • Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y, Takakura N, Kimura T, Okabe M (2011) Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci U S A 108:1451–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langdown ML, Sugden MC (2001) Enhanced placental GLUT1 and GLUT3 expression in dexamethasone-induced fetal growth retardation. Mol Cell Endocrinol 185:109–117

    Article  CAS  PubMed  Google Scholar 

  • Langley-Evans SC, Philips GJ, Benediktsson R, Gardner DS, Edwards CR, Jackson AA, Seckl JR (1996) Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta 17:169–172

    Article  CAS  PubMed  Google Scholar 

  • Lesage J, Blondeau B, Grino M, Bréant B, Dupouy JP (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702

    CAS  PubMed  Google Scholar 

  • Levitt S, Lindsay RS, Holmes MC, Seckl JR (1996) Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 64:412–418

    Article  CAS  PubMed  Google Scholar 

  • Lindsay RS, Lindsay RM, Edwards CR, Seckl JR (1996) Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Lucassen PJ, Bosch OJ, Jousma E, Krömer SA, Andrew R, Seckl JR, Neumann ID (2009) Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11beta-hydroxysteroid dehydrogenase type 2. Eur J Neurosci 29:97–103

    Article  CAS  PubMed  Google Scholar 

  • Mairesse J, Lesage J, Breton C, Bréant B, Hahn T, Darnaudéry M, Dickson SL, Seckl J, Blondeau B, Vieau D, Maccari S, Viltart O (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol Endocrinol Metab 292:E1526–E1533

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS (1983) Early adrenalectomy stimulates subsequent growth and development of the rat brain. Exp Neurol 82:432–446

    Article  CAS  PubMed  Google Scholar 

  • Mune T, Rogerson FM, Nikkilä H, Agarwal AK, White PC (1995) Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 10:394–399

    Article  CAS  PubMed  Google Scholar 

  • Murphy VE, Zakar T, Smith R, Giles WB, Gibson PG, Clifton VL (2002) Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab 87:1660–1668

    CAS  PubMed  Google Scholar 

  • Newnham JP, Jobe AH (2009) Should we be prescribing repeated courses of antenatal corticosteroids? Semin Fetal Neonatal Med 14:157–163

    Article  PubMed  Google Scholar 

  • Nyirenda MJ, Lindsay RS, Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O'Regan D, Kenyon CJ, Seckl JR, Holmes MC (2004) Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab 287:E863–E870

    Article  PubMed  Google Scholar 

  • Pankevich DE, Mueller BR, Brockel B, Bale TL (2009) Prenatal stress programming of offspring feeding behavior and energy balance begins early in pregnancy. Physiol Behav 98:94–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3, CD004454

    PubMed  Google Scholar 

  • Roland BL, Funder JW (1996) Localization of 11beta-hydroxysteroid dehydrogenase type 2 in rat tissues: in situ studies. Endocrinology 137:1123–1128

    CAS  PubMed  Google Scholar 

  • Roland BL, Krozowski ZS, Funder JW (1995) Glucocorticoid receptor, mineralocorticoid receptors, 11 beta-hydroxysteroid dehydrogenase-1 and -2 expression in rat brain and kidney: in situ studies. Mol Cell Endocrinol 111:1–7

    Article  Google Scholar 

  • Smith JT, Waddell BJ (2000) Increased fetal glucocorticoid exposure delays puberty onset in postnatal life. Endocrinology 141:2422–2428

    Article  CAS  PubMed  Google Scholar 

  • Stewart PM, Rogerson FM, Mason JI (1995) Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab 80:885–890

    CAS  PubMed  Google Scholar 

  • Stocker C, O'Dowd J, Morton NM, Wargent E, Sennitt MV, Hislop D, Glund S, Seckl JR, Arch JR, Cawthorne MA (2004) Modulation of susceptibility to weight gain and insulin resistance in low birthweight rats by treatment of their mothers with leptin during pregnancy and lactation. Int J Obes Relat Metab Disord 28:129–136

    Article  CAS  PubMed  Google Scholar 

  • Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447:480–489

    Article  CAS  PubMed  Google Scholar 

  • Waddell BJ, Benediktsson R, Brown RW, Seckl JR (1998) Tissue-specific messenger ribonucleic acid expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggests exquisite local control of glucocorticoid action. Endocrinology 139:1517–1523

    CAS  PubMed  Google Scholar 

  • Welberg LA, Seckl JR, Brown RW, Seckl JR (2000) Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 12:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104:71–79

    Article  CAS  PubMed  Google Scholar 

  • Whorwood CB, Ricketts ML, Stewart PM (1994) Epithelial cell localization of type 2 11 beta-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology 135:2533–2541

    CAS  PubMed  Google Scholar 

  • Woods LL, Weeks DA (2005) Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol 289:R955–R962

    Article  CAS  PubMed  Google Scholar 

  • Wyrwoll CS, Mark PJ, Mori TA, Puddey IB, Waddell BJ (2006) Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids. Endocrinology 147:599–606

    Article  CAS  PubMed  Google Scholar 

  • Wyrwoll CS, Mark PJ, Waddell BJ (2007) Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system. Hypertension 50:579–584

    Article  CAS  PubMed  Google Scholar 

  • Wyrwoll CS, Seckl JR, Holmes MC (2009) Altered placental function of 11beta-hydroxysteroid dehydrogenase 2 knockout mice. Endocrinology 150:1287–1293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Wellcome Trust project grant (WT079009; MCH, JLP, JJM, JRS). We acknowledge the support of the BHF Centre of Research Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin S. Wyrwoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wyrwoll, C.S. (2014). Developmental Programming and the Placenta: Focusing in on Glucocorticoids. In: Seckl, J., Christen, Y. (eds) Hormones, Intrauterine Health and Programming. Research and Perspectives in Endocrine Interactions, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-02591-9_2

Download citation

Publish with us

Policies and ethics