Skip to main content

Nonamenable Liouville Graphs

  • Chapter
  • First Online:
Coarse Geometry and Randomness

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2100))

  • 1622 Accesses

Abstract

In this section we present an example of a bounded degree graph with a positive Cheeger constant (i.e. nonamenable graph) which is Liouville, that is, it admits no non constant bounded harmonic functions. This example shows that the theorem proved in Sect. 12 cannot be extended to general graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Benjamini, J. Cao, Examples of simply-connected Liouville manifolds with positive spectrum. Differ. Geom. Appl. 6(1), 31–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Benjamini, D. Revelle, Instability of set recurrence and Green’s function on groups with the Liouville property. Potential Anal. 34(2), 199–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Benjamini, O. Schramm, Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126(3), 565–587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Grigorchuk, V.A. Kaimanovich, T. Nagnibeda, Ergodic properties of boundary actions and the Nielsen-Schreier theory. Adv. Math. 230(3), 1340–1380 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Grimmett, Percolation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. (Springer, Berlin, 1999)

    Google Scholar 

  6. S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (2006) (electronic)

    Google Scholar 

  7. B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth. J. Am. Math. Soc. 23(3), 815–829 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. V.A. Kaĭmanovich, A.M. Vershik, Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Lyons, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differ. Geom. 26(1), 33–66 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benjamini, I. (2013). Nonamenable Liouville Graphs. In: Coarse Geometry and Randomness. Lecture Notes in Mathematics(), vol 2100. Springer, Cham. https://doi.org/10.1007/978-3-319-02576-6_13

Download citation

Publish with us

Policies and ethics