Skip to main content

Quasi-Cyclic Low-Density Parity-Check Codes

  • Chapter
  • First Online:
QC-LDPC Code-Based Cryptography

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

In this chapter, we describe the main characteristics of a hybrid class of codes which are both quasi-cyclic (QC) and low-density parity-check (LDPC) codes. They join the powerful error correcting performance of LDPC codes with the structured nature of QC codes, which allows for very compact representations. This, together with the high number of equivalent codes, makes these codes well suited for cryptographic applications. This chapter addresses the design of these codes, as well as the estimation of the number of different codes having the same parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin S, Costello DJ (2004) Error control coding, 2nd edn. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  2. Townsend R, Weldon JE (1967) Self-orthogonal quasi-cyclic codes. IEEE Trans Inform Theory 13(2):183–195

    Article  MATH  Google Scholar 

  3. Kou Y, Lin S, Fossorier M (2001) Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory 47(7):2711–2736

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen L, Xu J, Djurdjevic I, Lin S (2004) Near-shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans Commun 52(7):1038–1042

    Article  Google Scholar 

  5. CCSDS (2006) Low density parity check codes for use in near-earth and deep space applications. Tech Rep Orange Book, Issue 1, Consultative Committee for Space Data Systems (CCSDS), Washington, DC, USA

    Google Scholar 

  6. Li Z, Kumar B (2004) A class of good quasi-cyclic low-density parity check codes based on progressive edge growth graph. In: Proceedings of 38th Asilomar conference on signals, systems and computers, vol 2, Pacific Grove, USA, pp 1990–1994

    Google Scholar 

  7. Hu XY, Eleftheriou E, Arnold DM (2005) Regular and irregular progressive edge-growth tanner graphs. IEEE Trans Inform Theory 51:386–398

    Article  MATH  MathSciNet  Google Scholar 

  8. Tanner R, Sridhara D, Fuja T (2001) A class of group-structured LDPC codes. In: Proceedings of ISTA 2001, Ambleside, England

    Google Scholar 

  9. Fossorier MPC (2004) Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans Inform Theory 50(8):1788–1793

    Article  MathSciNet  Google Scholar 

  10. Thorpe J, Andrews K, Dolinar S (2004) Methodologies for designing LDPC codes using protographs and circulants. In: Proceedings of IEEE international symposium on information theory (ISIT), Chicago, USA, p 236

    Google Scholar 

  11. Kim S, No JS, Chung H, Shin DJ (2007) Quasi-cyclic low-density parity-check codes with girth larger than 12. IEEE Trans Inform Theory 53(8):2885–2891

    Article  MathSciNet  Google Scholar 

  12. (2005) IEEE standard for local and metropolitan area networks. Part 16: air interface for fixed and mobile broadband wireless access systems. Amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands. 802.16e-2005

    Google Scholar 

  13. Hocevar D (2003) LDPC code construction with flexible hardware implementation. In: Proceedings of IEEE international conference on communications (ICC ’03), vol 4, Anchorage, USA, pp 2708–2712

    Google Scholar 

  14. Hocevar D (2003) Efficient encoding for a family of quasi-cyclic LDPC codes. In: Proceedings of IEEE global telecommunications conference (GLOBECOM ’03), vol 7, San Francisco, USA, pp 3996–4000

    Google Scholar 

  15. MacKay DJC, Davey M (1999) Evaluation of Gallager codes for short block length and high rate applications. In: Proceedings of IMA workshop codes, systems and graphical models. http://dx.doi.org/10.1007/978-1-4613-0165-3_6

  16. Kamiya N (2007) High-rate quasi-cyclic low-density parity-check codes derived from finite affine planes. IEEE Trans Inform Theory 53(4):1444–1459

    Article  MathSciNet  Google Scholar 

  17. Baldi M, Bambozzi F, Chiaraluce F (2011) On a family of circulant matrices for quasi-cyclic low-density generator matrix codes. IEEE Trans Inform Theory 57(9):6052–6067

    Article  MathSciNet  Google Scholar 

  18. Johnson S, Weller S (2003) A family of irregular LDPC codes with low encoding complexity. IEEE Commun Lett 7(2):79–81

    Google Scholar 

  19. Vasic B, Milenkovic O (2004) Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans Inform Theory 50(6):1156–1176

    Article  MathSciNet  Google Scholar 

  20. Fujisawa M, Sakata S (2005) A class of quasi-cyclic regular LDPC codes from cyclic difference families with girth 8. In: Proceedings of international symposium on information theory (ISIT 2005), Adelaide, Australia, pp 2290–2294

    Google Scholar 

  21. Baldi M, Chiaraluce F (2005) New quasi cyclic low density parity check codes based on difference families. In: Proceedings of 8th international symposium on communication theory and applications, ISCTA 05, Ambleside, UK, pp 244–249

    Google Scholar 

  22. Xia T, Xia B (2005) Quasi-cyclic codes from extended difference families. In: Proceedings of IEEE wireless communications and networking conference, vol 2, New Orleans, USA, pp 1036–1040

    Google Scholar 

  23. CCSDS (2012) TM synchronization and channel coding—summary of concept and rationale. Green Book, Consultative Committee for Space Data Systems (CCSDS), CCSDS 130.1-G-2

    Google Scholar 

  24. Misoczki R, Tillich JP, Sendrier N, Barreto P (2013) MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In: Proceedings of IEEE international symposium on information theory (ISIT 2013), Istanbul, Turkey, pp 2069–2073

    Google Scholar 

  25. Baldi M, Bianchi M, Chiaraluce F (2013) Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems. In: Proceedings of IEEE ICC (2013) workshop on information security over noisy and lossy communication systems. Budapest, Hungary

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Baldi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Baldi, M. (2014). Quasi-Cyclic Low-Density Parity-Check Codes. In: QC-LDPC Code-Based Cryptography. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02556-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02556-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02555-1

  • Online ISBN: 978-3-319-02556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics