Low-Density Parity-Check Codes

  • Marco BaldiEmail author
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


This chapter provides a brief overview of the basic concepts and definitions concerning Low-Density Parity-Check (LDPC) codes, which will be used in the remainder of the book. The notation concerning LDPC codes which will be used throughout the book is introduced. LDPC encoding and decoding algorithms and their complexity are also discussed.


Linear block codes Parity-check matrix LDPC codes Tanner graph Belief propagation decoding Bit flipping decoding 


  1. 1.
    Gallager RG (1962) Low-density parity-check codes. IRE Trans Inform Theory IT 8:21–28Google Scholar
  2. 2.
    Richardson T, Urbanke R (2003) The renaissance of Gallager’s low-density parity-check codes. IEEE Commun Mag 41(8):126–131CrossRefGoogle Scholar
  3. 3.
    MacKay DJC, Neal RM (1995) Good codes based on very sparse matrices. In: Boyd C (ed) Cryptography and coding. 5th IMA conference, no. 1025. Lecture notes in computer science. Springer, Berlin, pp 100–111Google Scholar
  4. 4.
    Richardson T, Urbanke R (2001) The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans Inform Theory 47(2):599–618CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    ETSI EN 302 307 V111 (2004) Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applicationsGoogle Scholar
  6. 6.
    IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 5: Enhancements for Higher Throughput. 802.11n-2009Google Scholar
  7. 7.
    IEEE Standard for Local and metropolitan area networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. 802.16e-2005Google Scholar
  8. 8.
    IEEE Standard for Local and metropolitan area networks. Part 20: Air Interface for Mobile Broadband Wireless Access Systems Supporting Vehicular Mobility — Physical and Media Access Control Layer Specification. 802.20-2008Google Scholar
  9. 9.
    Sae-Young C, Forney G, Richardson T, Urbanke R (2001) On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett 5(2):58–60Google Scholar
  10. 10.
    Lin S, Costello DJ (2004) Error control coding, 2nd edn. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  11. 11.
    Luby M, Mitzenmacher M, Shokrollahi M, Spielman D (2001) Improved low-density parity-check codes using irregular graphs. IEEE Trans Inform Theory 47(2):585–598CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Johnson SJ (2010) Iterative error correction. Cambridge University Press, New YorkzbMATHGoogle Scholar
  13. 13.
    Cheng JF, McEliece RJ (1996) Some high-rate near capacity codecs for the Gaussian channel. In: Proceedings of 34th Allerton conference on communications, control and computing, AllertonGoogle Scholar
  14. 14.
    Richardson T, Urbanke R (2001) Efficient encoding of low-density parity-check codes. IEEE Trans Inform Theory 47:638–656CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Neal RM (1999) Sparse matrix methods and probabilistic inference algorithms.
  16. 16.
    Kaji Y, Fossorier MP, Lin S (2004) Encoding LDPC codes using the triangular factorization. In: Proceedings of international symposium on information theory and its applications (ISITA2004), Parma, pp 37–42Google Scholar
  17. 17.
    Ping L, Leung W, Phamdo N (1999) Low density parity check codes with semi-random parity check matrix. Electron Lett 35:38–39CrossRefGoogle Scholar
  18. 18.
    Freundlich S, Burshtein D, Litsyn S (2007) Approximately lower triangular ensembles of LDPC codes with linear encoding complexity. IEEE Trans Inform Theory 53(4):1484–1494CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Haley D, Grant A, Buetefuer J (2002) Iterative encoding of low-density parity-check codes. In: Proceedings of IEEE global telecommunications conference (GLOBECOM ’02), vol 2, Taipei, pp 1289–1293Google Scholar
  20. 20.
    Haley D, Grant A (2005) Improved reversible LDPC codes. In: Proceedings IEEE international symposium on information theory (ISIT 2005), Adelaide, pp 1367–1371Google Scholar
  21. 21.
    Gauss CF (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Perthes and Besser, HamburgGoogle Scholar
  22. 22.
    Baldi M, Chiaraluce F (2005) On the design of punctured low density parity check codes for variable rate systems. J Commun Softw Syst 1(2):88–100Google Scholar
  23. 23.
    Baldi M, Cancellieri G, Chiaraluce F (2009) Finite-precision analysis of demappers and decoders for LDPC-coded M-QAM-systems. IEEE Trans Broadcast 55(2):239–250CrossRefGoogle Scholar
  24. 24.
    Zarrinkhat P, Banihashemi A (2004) Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes. IEEE Trans Commun 52(12):2087–2097CrossRefGoogle Scholar
  25. 25.
    Miladinovic N, Fossorier MPC (2005) Improved bit-flipping decoding of low-density parity-check codes. IEEE Trans Inform Theory 51(4):1594–1606CrossRefMathSciNetGoogle Scholar
  26. 26.
    Cho J, Sung W (2010) Adaptive threshold technique for bit-flipping decoding of low-density parity-check codes. IEEE Commun Lett 14(9):857–859CrossRefGoogle Scholar
  27. 27.
    Zhang J, Fossorier MPC (2004) A modified weighted bit-flipping decoding of low-density parity-check codes. IEEE Commun Lett 8(3):165–167CrossRefGoogle Scholar
  28. 28.
    Shan M, Zhao CM, Jiang M (2005) Improved weighted bit-flipping algorithm for decoding LDPC codes. IEE Proc Commun 152:919–922CrossRefGoogle Scholar
  29. 29.
    Baldi M (2009) LDPC codes in the McEliece cryptosystem: attacks and countermeasures. NATO science for peace and security series-D: information and communication security, vol 23. IOS Press, pp 160–174Google Scholar
  30. 30.
    Baldi M, Bianchi M, Chiaraluce F (2013) Security and complexity of the McEliece cryptosystem based on QC-LDPC codes. IET Inf Secur 7(3):212–220CrossRefGoogle Scholar
  31. 31.
    Hu XY, Eleftheriou E, Arnold DM, Dholakia A (2001) Efficient implementations of the sum-product algorithm for decoding LDPC codes. In: Proceedings IEEE global telecommunications conference GLOBECOM ’01, San Antonio, vol 2. pp 1036–1036EGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.DIIUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations