Global Wave-front Sets of Intersection and Union Type

  • Sandro CoriascoEmail author
  • Karoline Johansson
  • Joachim Toft
Conference paper
Part of the Trends in Mathematics book series (TM)


We show that a temperate distribution belongs to an ordered intersection or union of admissible Banach or Fréchet spaces if and only if the corresponding global wave-front set of union or intersection type is empty. We also discuss the situation where intersections and unions of sequences of spaces with two indices are involved. A main situation where the present theory applies is given by sequences of weighted, general modulation spaces.


Wave-front Fourier Banach space modulation space micro-local pseudo-differential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sandro Coriasco
    • 1
    Email author
  • Karoline Johansson
    • 2
  • Joachim Toft
    • 2
  1. 1.Dipartimento di Matematica “G. Peano”Università degli Studi di TorinoTorinoItaly
  2. 2.Department of MathematicsLinnæus UniversityVäxjöSweden

Personalised recommendations