Skip to main content

Nutrient Dynamics in Forest Soil

  • Chapter
  • First Online:
Forest Soils

Abstract

Forest stands produce 100–500 t ha−1 total standing biomass (dry weight) including 60–80 % in stemwood, 10–20 % in branches, 5–10 % in barks, 5–10 % in roots, and 1–5 % in leaves. About 58 % of this biomass is carbon. To produce such huge amounts of biomass, forest plants use 200–2,500 kg ha−1 N, similar amounts of K and Ca, and 20–200 kg ha−1 P. The annual uptake of nutrients by forest trees varies considerably depending on tree species and soil fertility. In one study, annual uptake rates of N, P, K, Ca, and Mg were 178.59, 27.48, 80.46, 349.39, and 63.70 kg ha−1, respectively. Some absorbed nutrients are resorbed from senescing leaves and meet the urgent needs of new flush. A part of the absorbed nutrients are retained in biomass and used for further biomass accretion. A considerable part of absorbed nutrients is returned annually in the form of litterfall, stemflow, throughfall, root decay, and death and decay of soil organisms. Litterfall is the primary route of nutrient returns in forests and annually 3–15 t ha−1 litters fall to the forest floor. Litterfall brings about 30–225 kg N ha−1 per year, 1.2–15 kg P ha−1 per year, 6–68 kg K ha−1 per year, 6.5–290 kg Ca ha−1 per year, and 1–64 kg Mg ha−1 per year in some instances. These nutrients are released to the soil nutrient pool by the decomposition of litter. Usually K, Ca and Mg and sometimes P are released from the beginning of the decomposition process, and in most of the instances, nitrogen is immobilized by decomposing organisms up to the 50 % of the mass loss, and becomes liberated afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Abee A, Lavender D (1972) Nutrient cycling in throughfall and litterfall in 450-year-old Douglas-fir stands. Proceedings-Research on Coniferous Forest Ecosystems-A symposium. Bellingham, Washington-March 23-24, 1972

    Google Scholar 

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Google Scholar 

  • Alban DH, Pastor J (1993) Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Can J For Res 23(9):1744–1749

    CAS  Google Scholar 

  • Albaugh TJ, Allen HL, Fox TR (2008) Nutrient use and uptake in Pinus taeda. Tree Physiol 28:1083–1098

    PubMed  CAS  Google Scholar 

  • Alifragis D, Papamichos NT (1990) Conservation of forest soil productivity. Proceedings of the third National Soil Conference: 187–195 (In Greek)

    Google Scholar 

  • Anderson F (1970) Ecological studies in a Scanian woodland and meadow area, southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot Not 123:8–51

    Google Scholar 

  • Anderson JM (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvaticaL.) leaf litter in two deciduous woodland soils. Oecologia 12:251–274

    Google Scholar 

  • Anderson JM, Swift MJ (1983) Decomposition in tropical forests. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Publications, Oxford

    Google Scholar 

  • Anderson JM, Proctor J, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. III. Decomposition process and nutrient losses from leaf litter. J Ecol 71:503–527

    Google Scholar 

  • Andre F, Jonard M, Ponette Q (2010) Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci Total Environ 408(11):2285–2294

    PubMed  CAS  Google Scholar 

  • Aponte C, García LV, Pérez-Ramos IM, Gutiérrez E, Marañón T (2011) Oak trees and soil interactions: a positive feedback model. J Veg Sci 22:856–867

    Google Scholar 

  • Arthur MA, Fahey TJ (1990) Mass and nutrient content of decaying boles in an Engelmann spruce subalpine fir forest, Rocky Mountain National Park, Colorado. Can J For Res 20(6):730–737

    CAS  Google Scholar 

  • Ashton DH (1975) Studies of litter in Eucalyptus regnans forest. Aust J Bot 23:413–433

    CAS  Google Scholar 

  • Attiwill PM (1968) The loss of elements from decomposing litter. Ecology 49:142–145

    Google Scholar 

  • Augusto L, Ranger J, Ponette Q, Rapp M (2000) Relationships between forest tree species, stand production and stand nutrient amount quantifying the difference between concentration values from the literature and actuals. Ann For Sci 57:313–324

    Google Scholar 

  • Baker TG, Attiwill PM (1985) Above-ground nutrient distribution and cycling in Pinus radiata D. Don and Eucalyptus obliqua L’Hérit. forests in southeastern Australia. For Ecol Manage 13:41–52

    CAS  Google Scholar 

  • Barron-Gafford GA, Will RE, Burkes EC, Shiver B, Teskey RO (2003) Nutrient concentrations and contents, and their relation to stem growth, of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities. For Sci 49(2):291–300

    Google Scholar 

  • Bellot J, Sanchez JR, Lledo MJ, Martinez P, Escarre A (1992) Litterfall as a measure of primary production in Medditerranean holm-oak forest. Vegetatio 99–100:69–76

    Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Berg B (1986) Nutrient release from litter and humus in coniferous forest soils: a mini review. Scand J For Res 1:359–369

    Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecol Bull 32:373–390

    CAS  Google Scholar 

  • Bernhard-Reversat F (1972) Decomposition de la litiere de feuilles en forest ombrophile de Cote d’Ivoire. Oecol. Plant 7:279–300

    Google Scholar 

  • Bhardwaj HI, Rangappa M, Hamama AA (2002) Planting date and genotype effects on tepary bean productivity. HortScience 37(2):317–318

    Google Scholar 

  • Bhardwaj BB, Gupta SR, Reena S, Sodhi JS, Singh A (2005) Nutrient dynamics in a Populus deltoides agroforestry system at Kurukshetra. Bull Natl Inst Ecol 15:99–108

    Google Scholar 

  • Bhat NH, Jan S (2010) Litterfall and Nutrient Return in Ulmus villosa Forests of Dachigam National Park, Jammu and Kashmir. Res J Agric Sci 1(4):363–365

    Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants-an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Bocock KL (1963) Changes in the amount of nitrogen in decomposing leaf litter of sessile oak (Quercus petraca). J Ecol 51:555–566

    Google Scholar 

  • Bocock KL (1964) Change in the amounts of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna. J Ecol 52:273–284

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of litter under different woodland conditions. Plant Soil 9:179–185

    Google Scholar 

  • Bocock KL, Gilbert OJW, Capstick CK, Twinn DC, Waid JS, Woodman M (1960) Changes in the leaf litter when placed on the surface of soils with contrasting humus types. 1. Losses in dry weight of oak and ash leaf litters. J Soil Sci 11:1–9

    CAS  Google Scholar 

  • Boring LR, Monk CD, Swank WT (1981) Early regeneration of a clear-cut southern Appalachian forest. Ecology 62:1244–1253

    CAS  Google Scholar 

  • Bormann FH, Likens GE, Siccama TG, Pierce RS, Eaton JS (1974) The effect of deforestation on ecosystem export and the steady-state condition at Hubbard Brook. Ecol Monogr 44:255–277

    Google Scholar 

  • Borong C, Guangshan X, Xiaoyuan G, Guoliang Z (1993) Nutrient input of throughfall in a pine-spruce-fir forest of Changbai Mountain. Chinese J Appl Ecol 4(4):447–449

    Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. Advan Ecol Res 2:101–157

    Google Scholar 

  • Brown S, Lugo AE (1982) Structure and production in tropical forest and their role in global carbon cycle. Biotropica 14:161–187

    Google Scholar 

  • Brown S, Lugo AE (1984) Biomass of tropical forests: a new estimate based on forest volumes. Science 233:1290–1293

    Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1991) Biomass of tropical forests of south and Southeast Asia. Can J For Res 21:111–117

    Google Scholar 

  • Brown S, Mo J, McPherson JK, Bell DT (1996) Decomposition of woody debris in Western Australian forests. Can J For Res 26(6):954–966

    Google Scholar 

  • Burges A (1967) The decomposition of organic matter in the soil. In: Burges A, Raw F (eds) Soil biology. Academic Press, London

    Google Scholar 

  • Caldwell MM (1987) Competition between roots in natural communities. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, New York

    Google Scholar 

  • Caritat A, Berthou EG, Lapena R, Vilar L (2006) Litter production in a Quercus suber forest of Montseny (NE Spain) and its relationship to meteorological conditions. Ann For Sci 63:791–800

    Google Scholar 

  • Carlisle A, Brown AHF, White EJ (1966) Litterfall, leaf production and effects of defoliation by Tortrix viridiana in a sessile oak (Quercus petraea) woodland. J Ecol 54:65–85

    Google Scholar 

  • Cavelier J (1992) Fine-root biomass and soil properties in a semi-deciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201

    CAS  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259

    Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    CAS  Google Scholar 

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391

    CAS  Google Scholar 

  • Chave J, Navarrete D, Almeida S et al. (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55

    Google Scholar 

  • Coldwell BB, DeLong WA (1950) Studies on the composition of deciduous forest tree leaves before and after partial decomposition. Sci Agric 30:456–466

    Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. IBP 23. Cambridge University Press, Cambridge

    Google Scholar 

  • Cole DW, Gessel SP, Turner J (1978) Comparative mineral cycling in red alder and Douglas-fir. In: Briggs DG, DeBell DS, Atkinson WA (eds) Composition, Utilization and Management of alder. USDA For Serv Gen Tech Report. PNW −70. USDA, Washington

    Google Scholar 

  • Colin-Belgrand M, Ranger J, Bouchon J (1996) Internal Nutrient Translocation in Chestnut Tree Stemwood: III. Dynamics Across an Age Series of Castanea sativa (Miller). Ann Bot (Lond) 78:729–740

    Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above-ground and below-ground biomass and production of lodgepole pine on sites with differing soil-moisture regimes. Can J For Res 19:447–454

    Google Scholar 

  • Cornett MW, Puettmann KJ, Frelich LE, Reich PB (2001) Comparing the importance of seedbed and canopy type in the restoration of upland Thuja occidentalis forests of northeastern Minnesota. Restor Ecol 9(4):386–396

    Google Scholar 

  • Cornforth IS (1970) Leaf fall in a tropical rain forest. J Appl Ecol 7:603–608

    Google Scholar 

  • Cromack K Jr (1973) Litter production and litter decomposition in a mixed hardwood watershed and in a white pine watershed at Coweeta Hydrologic Station, North Carolina. Ph.D. thesis, Univ. Georgia, Athens

    Google Scholar 

  • Cromack K Jr, Monk CD (1975) Litter production, decomposition, and nutrient cycling in a mixed hardwood watershed and white pine watershed. In: Howell FG, Gentry JB, Smith MH (eds) Mineral Cycling in Southeastern Ecosystems. US Energy Research and Development Admin. Symposium Series CONF- 740613, Washington, DC

    Google Scholar 

  • Crosby JS (1961) Litter-and-duff fuel in shortleaf pine stands in southeast Missouri. Central States For Exp Stn Tech Paper 178. US For Serv Columbus, Ohio

    Google Scholar 

  • Cuevas E, Brown S, Lugo AE (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135:257–268

    Google Scholar 

  • Cutini A (2000) Biomass, litterfall and productivity in chestnut coppices of various age at Monte Amiata (Central Italy). Ecologia Mediterranea 26(1-2):33–41

    Google Scholar 

  • Dahlman RC, Kucera CL (1965) Root productivity and turnover in native prairie. Ecology 46:84–89

    Google Scholar 

  • Das DK, Chaturvedi OP (2003) Litter quality effects on decomposition rates of forestry plantations. Tropical Ecology 44(2):261–264

    Google Scholar 

  • Day FP Jr (1982) Litter Decomposition Rates in the Seasonally Flooded Great Dismal Swamp. Ecology 63(3):670–678

    CAS  Google Scholar 

  • Day FP, Monk CD (1977) Net primary production and phe-nology on a southern Appalachian watershed. Am J Bot 64:1117–1125

    Google Scholar 

  • DeCatanzaro JB, Kimmins JP (1985) Changes in the weight and nutrient composition of litterfall in three forest ecosystem types on Coastal British Columbia. Can J Bot 63:1046–1056

    CAS  Google Scholar 

  • Del Arco JM, Escudero A, Garrido MV (1991) Effect of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708

    Google Scholar 

  • deMaynadier PG, Hunter ML Jr (1995) The relationship between forest management and amphibian ecology: a review of the North American literature. Environ Rev 3:230–261

    Google Scholar 

  • Devlaeminck R, An DS, Hermy M (2005) Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Sci Total Environ 337:241–252

    PubMed  CAS  Google Scholar 

  • Dimock IIEJ (1958) Litterfall in a Young Stand of Douglas-Fir Northwest Science 32(1):19–29

    Google Scholar 

  • Duvall MD, Grigal DF (1999) Effects of timber harvesting on coarse woody debris in red pine forests across the Great Lakes states, USA. Can J For Res 29(12):1926–1934

    Google Scholar 

  • Eaton JS, Likens GE, Bormann FH (1973) Throughfall and Stemflow Chemistry in a Northern Hardwood Forest. J Ecol 61(2):495–508

    CAS  Google Scholar 

  • Edmonds RL, Murray GLD (2002) Overstory litter inputs and nutrient returns in an old-growth temperate forest ecosystem, Olympic National Park, Washington. Can J For Res 32(4):742–750

    CAS  Google Scholar 

  • Escudero A, del Arco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos 49:11–14

    Google Scholar 

  • Escudero A, del Arco JM, Sanz IC, Ayala J (1991) Effect of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87

    Google Scholar 

  • Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J Ecol 64:293–308

    CAS  Google Scholar 

  • Fahey TJ, Hughes JW, Pu M, Arthur MA (1988) Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. For Sci 34:744–768

    Google Scholar 

  • Falconer JG, Wright JW, Beall HW (1933) The decomposition of certain types of forest litter under field conditions. Am J Bot 20:196–203

    CAS  Google Scholar 

  • Fang JY, Wang GG, Liu GH, Xu SL (1998) Forest biomass of China: An estimate based on the biomass-volume relationships. Ecol Appl 84(4):1084–1091

    Google Scholar 

  • Fife DN, Nambiar EKS (1982) Accumulation and retranslocation of mineral nutrients in developing needles in relation to seasonal growth of young radiata pine trees. Ann Bot 50:817–829

    CAS  Google Scholar 

  • Fior RC, Soares MR, Casagrande JC (2010) Nutrient input through litter in riparian forest in different stages of ecological succession. 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1-6 August 2010, Brisbane, Australia. Published on DVD

    Google Scholar 

  • Foster JR, Lang GE (1982) Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can J For Res 12(3):617–626

    CAS  Google Scholar 

  • Frankland JC (1966) Succession of fungi on decaying petioles of Pteridium aquilinum. J Ecol 54:41–63

    Google Scholar 

  • Gallardo JF, Santa-Regina I, San Miguel C (1989) Ciclos bioegeoquimicos en bosques de la Sierra de Bejur (Salamanca, Espana). I. Production de hojarasca. Rev Ecol Biol Sol 26:35–46

    Google Scholar 

  • Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004) Decomposition and nutrient release from radiate pine (Pinus radiata) coarse woody debris. For Ecol Manag 187(2-3):197–211

    Google Scholar 

  • Gerhardt K, Fredriksson D (1995) Biomass allocation by broadleaf mahogany seedlings, Swietenia macrophylla (King), in abandoned pasture and secondary dry forest in Guanacaste, Costa Rica. Biotropica 27:174–182

    Google Scholar 

  • Gholz HL, Fisher RF, Pritchet WL (1985) Nutrient dynamics in slash pine plantation ecosystems. Ecology 66:647–659

    Google Scholar 

  • Gilbert O, Bocock KL (1960) Changes in the leaf litter when placed on the surface of soils with contrasting humus types. II. Changes in the nitrogen content of oak and ash litter. J Soil Sci 11:10–19

    CAS  Google Scholar 

  • Gillespie AJR, Brown S, Lugo AE (1992) Tropical forest biomass estimations from truncated stand tables. For Ecol Manag 48:69–87

    Google Scholar 

  • Glumphabutr P, Kaitpraneet S, Wachrinrat C (2007) Nutrient Dynamics of Natural Evergreen Forests in the Eastern Region of Thailand. Kasetsart J Nat Sci 41:811–822

    CAS  Google Scholar 

  • Gonzalez E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica 31(1):173–186

    Google Scholar 

  • Gordon WS, Jackson RB (2000) Nutrient concentrations in fine roots. Ecology 81(1):275–280

    Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient Release From Decomposing Leaf and Branch Litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43(2):173–191

    Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1976) Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia 22:305–320

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Gunadi B (1994) Litterfall, litter turnover and soil respiration in two pine forest plantations in Central Java, Indonesia. J Trop For Sci 6(3):310–322

    Google Scholar 

  • Hansen K, Vesterdal L, Schmidt IK, Gundersen P, Sevel L, Birk AB, Pedersen LB, Hansen JB (2009) Litterfall and nutrient return in five tree species in a common garden experiment. For Ecol Manag 257:2133–2144

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Google Scholar 

  • Harmon ME, Sexton J, Caldwell BA, Carpenter SE (1994) Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition. Can J For Res 24(9): 1883–1893

    Google Scholar 

  • Helmisaari HS (1992) Nutrient retranslocation in three Pinus sylvestris stands. For Ecol Manag 51:347–367

    Google Scholar 

  • Helmisaari HS (1995) Nutrient cycling in Pinus sylvestris stands in eastern Finland. Plant Soil 168-169:327–336

    Google Scholar 

  • Hopkins B (1966) Vegetation of the Olokemeji Reserve, Nigeria. IV. The litter and soil with special reference to their seasonal changes. J Ecol 54:687–703

    Google Scholar 

  • Howard PJ, Howard DM (1974) Microbial decomposition of tree and shrub litter. I. Weight loss and chemical composition of decomposing litter. Oikos 25:341–352

    CAS  Google Scholar 

  • Ibrahima A, Mvondo Ze A, Ntonga JC (2010) Aboveground biomass and nutrient accumulation in the tropical rainforests of southern Cameroon: effects of logging. Cameroon J Exptl Biol 6(1):49–62

    Google Scholar 

  • Janowiak MK, Webster CR (2010) Promoting ecological sustainability in woody biomass harvesting. J For 108(1):16–23

    Google Scholar 

  • Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    CAS  Google Scholar 

  • Jonasson S (1990) Implications of leaf longevity, leaf nutrient reabsorption and translocation for the resource economy of five evergreen plant species. Oikos 56:121–131

    Google Scholar 

  • Jonasson S (1995) Resource allocation in relation to leaf retention time of the wintergreen Rhododendron lapponicum. Ecology 76:475–485

    Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fennica 39(2):289–309

    Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Kadeba O, Aduayi EA (1985) Litter production, nutrient recycling and litter accumulation inPinus caribaea Morelet var.hondurensis stands in the northern Guniea savanna of Nigeria. Plant Soil 86(2):197–206

    CAS  Google Scholar 

  • Keenan RJ, Prescott CE, Kimmins JP (1993) Mass and nutrient content of woody debris and forest floor in western red cedar and western hemlock forests on northern Vancouver Island. Can J For Res 23(6):1052–1059

    Google Scholar 

  • Kendrick WB (1959) The time factor in decomposition of coniferous leaf litter. Can J Bot 37:907–912

    Google Scholar 

  • Killingbeck KT (1985) Automnal resorption and accretion of trace metals in gallery forest trees. Ecology 66:283–286

    CAS  Google Scholar 

  • Knacker T, Forster B, Rombke J, Frampton GK (2003) Assessing the effects of plant protection products on organic matter breakdown in arable fields-litter decomposition test systems. Soil Biol Biochem 35:1269–1287

    CAS  Google Scholar 

  • Koelling MR, Kucera CL (1965) Production and turnover relationships in native tall grass prairie. Iowa State J Sci 39:387–392

    Google Scholar 

  • Krajick K (2001) Defending deadwood. Science 293(5535):1579–1581

    PubMed  CAS  Google Scholar 

  • Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29(1):20–32

    Google Scholar 

  • Kucera CL (1959) Weathering characteristics of deciduous leaf litter. Ecology 40(3):485–487

    Google Scholar 

  • Kutbay HG, Horuz A (2001) Litterfall and nutrient returns in Quercus cerris L, Var cerris forests in the central Black Sea Region of Turkey. Pak J Bot 33(3):293–303

    Google Scholar 

  • La Marca O (1984) Ricerche sulla biomassa dei cedui di catagno (Castanea sativa Mill.) dell Valle dell´Irno (AV e SA). Richerche Spèrimentali di dendrometria e di Auxomatria 8:63–79

    Google Scholar 

  • Laiho R, Prescott CE (1999) The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Can J For Res 29(10):1592–1603

    Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34(4):763–777

    CAS  Google Scholar 

  • Lal CB, Annapurna C, Raghubanshi AS, Singh JS (2001) Foliar demand and resource economy of nutrients in dry tropical forest species. J Veg Sci 12:5–14

    Google Scholar 

  • Lambert RL, Lang GE, Reiners WA (1980) Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61(6):1460–1473

    Google Scholar 

  • Lang GE (1974) Litter dynamics in a mixed oak forest on the New Jersey Piedmont. Bull Torrey Bot Club 101:277–286

    Google Scholar 

  • Lang G, Forman TTR (1978) Detrital dynamics in a mature oak forest: Hutcheson Memorial Forest, New Jersey. Ecol 59(3):580–595

    CAS  Google Scholar 

  • Laudelout H, Meyer I (1954) Les cycles d’elements minerales et de matiere organique en foret equatoriale Congolaise. Trans 5th Int Cong Soil Sci 2:267–272

    Google Scholar 

  • Li ZA, Zou B, Xia HP, Ren H, Mo JM, Weng H (2005) Litterfall Dynamics of an evergreen broadleaf forest and a pine forest in the subtropical region of China. For Sci 51(6):608–615

    Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook Watershed Ecosystem. Ecol Monogr 40:23–47

    Google Scholar 

  • Lim MT, Cousens JE (1986) The internal transfer of nutrients in a Scots pine stand. 2. The patterns of transfer and the effects of nitrogen availability. Forestry 59:17–27

    Google Scholar 

  • Liu W, Fox JED, Xu Z (2002) Biomass and nutrient accumulation in montane evergreen borad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China. For Ecol Manage 158:223–235

    Google Scholar 

  • Liu X, Xu H, Berninger F, Luukkanen O, Li C (2004) Nutrient distribution in Picea likiangensis trees growing in a plantation in West Sichuan, Southwest China. Silva Fennica 38(3):235–242

    Google Scholar 

  • Lodhiyal LS, Singh RP, Singh SP (1995) Structure and function of an age series of poplar plantations in central Himalaya. II. Nutrient dynamics. Ann Bot 76:201–210

    Google Scholar 

  • Lugo AE, Brown S, Chapman J (1988) An analytical review of production rates and stemwood biomass of tropical forest plantations. For Ecol Manage 23:179–200

    Google Scholar 

  • Lunt HA (1935) Effect of weathering upon dry matter and composition of hardwood leaves. J For 33:607–609

    CAS  Google Scholar 

  • Luvall JC, Weaver GT (1985) Organic matter and nutrient content of the forest floor of oak-hickory forests in southwestern Illinois. Paper presented at the Fifth Central Hardwood Forest Conference held at Urbana, Illinois, April 15-17, 1985

    Google Scholar 

  • Madge DS (1965) Leaf fall and litter disappearance in a tropical forest. Pedobiologia 5:273–288

    Google Scholar 

  • Madgwick HAI, Ovington JD (1959) The chemical composition of precipitation in adjacent forest and open plots. Forestry 32(1):14–22

    CAS  Google Scholar 

  • McComb W, Lindenmayer D (1999) Dying, dead, and down trees. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, England

    Google Scholar 

  • McGinty DT (1976) Comparative root and soil dynamics on a white pine watershed and in the hardwood forest in the Coweeta basin. PhD Thesis, Univ. of Georgia, Athens

    Google Scholar 

  • Meier CE (1981) The role of fine roots in nitrogen and phosphorus budgets of young and mature Abies amabilis ecosystems. Ph D Thesis, University of Washington

    Google Scholar 

  • Meier CE, Grier CC, Cole DW (1985) Below- and aboveground N and P use by Abies amabilis stands. Ecology 66:1928–1942

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to organic matter. Plant Soil 115:189–198

    Google Scholar 

  • Mikola P (1954) Kokeellisia tutkimuksia metsakarikkeiden hajaantumisnopeu-desta. Commun Inst For Fenn 43:1–50

    Google Scholar 

  • Mladenoff DJ, Forrester JA, Schatz J (2010) Impacts of biomass removal on carbon and nutrient pools in Wisconsin northern hardwood forests: establishment of a long-term study. Final report. State of Wisconsin, Public Service Commission, Madison

    Google Scholar 

  • Monk CD, Day FP Jr (1988) Biomass, primary production, and selected nutrient budgets for an undisturbed hardwood watershed, p. 151–159. In: Swank WT, Crossley DA Jr (eds) Forest ecology and hydrology at Coweeta. Springer-Verlag, New York

    Google Scholar 

  • Moore TR (1984) Litter decomposition in a subarctic spruce-lichen woodland, Eastern Canada. Ecology 65(1):299–230

    CAS  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CA, Fyles J, Titus BD, et al (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9(1):46–62

    CAS  Google Scholar 

  • Morellato LPC (1992) Nutrient cycling in two south-east Brazilian forests. I. Litter fall and litter standing crop. J Trop Ecol 8:205–215

    Google Scholar 

  • Morrison IK (1991) Addition of organic matter and elements to the forest floor of an old-growth Accer saccharum forest annual litterfall. Can J For Res 21:461–468

    Google Scholar 

  • Muoghalu JI, Akanni SO, Eretan OO (1993) Litterfall and nutrient dynamics in a Nigerian rainforest seven years after a ground fire. J Veg Sci 4:303–328

    Google Scholar 

  • Murali KS, Bhat DM, Ravindranath NH (2005) Biomass estimation equations for tropical deciduous and evergreen forests. Int J Agric Res Gov Ecol 4(1):81–92

    Google Scholar 

  • Nadezhdina N, Tatarinov F, Ceulemans R (2004) Leaf area and biomass of Rhododendron understory in a stand of Scots pine. For Ecol Manage 187:235–246

    Google Scholar 

  • Nakane K (1995) Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. For Ecol Manag 72:185–197

    Google Scholar 

  • Nambiar EKS, Fife DN (1987) Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Ann Bot 60:147–156

    Google Scholar 

  • Nambiar EKS, Fife DF (1991) Nutrient retranslocation in temperate conifers. Tree Physiol 9:185–207

    CAS  Google Scholar 

  • Nascimentoa HEM, Laurance WF (2001) Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management 5793:1–11

    Google Scholar 

  • Nasiru AA (2000) Litter biomass and soil organic matter content in a chronosequence of tectona grandis (l.f.) stands in shasha forest reserve, Nigeria. M. Tech Thesis. Department of Forestry and Wood Technology, School of Postgraduate Studies, Federal University of Technology, Akure, Nigeria

    Google Scholar 

  • Navar J, Mendez E, Dale V (2002) Estimating stand biomass in the Tamaulipan thornscrub of northeastrn Mexico. Ann For Sci 59:813–821

    Google Scholar 

  • Navarrete AJ (2002) Litter Production of Rhizophora Mangle at Bacalar Chico, Southern Quintana Roo, Mexico. Universidad y Ciencia 18(36):79–86

    Google Scholar 

  • Nicholas C, Songwe DU, Okali U, Fasehun FE (1995) Litter decomposition and nutrient release in a tropical rainforest, Southern Bakundu Forest Reserve. Cameroon J Trop Ecol 11(3):333–350

    Google Scholar 

  • Nihlgard B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in southern Sweden. Oikos 23:69–81

    CAS  Google Scholar 

  • Nirmal Kumar IJ, Sajish PR, Nirmal Kumar R, Basil G, Shailendra V (2011) Nutrient Dynamics in an Avicennia marina (Forsk.) Vierh. Mangrove Forest in Vamleshwar, Gujarat, India. Not Sci Biol 3(1):51–56

    Google Scholar 

  • Nye PH (1961) Organic matter and nutrient cycles under moist tropical forests. Plant Soil 13:333–346

    CAS  Google Scholar 

  • Nye PH, Greenland DJ (1960) The Soil under Shifting Cultivation. Tech. Comm. No. 51. Commonwealth Bureau of Soils, Harpenden, England

    Google Scholar 

  • O’Connell AM (1988) Nutrient Dynamics in Decomposing Litter in Karri (Eucalyptus Diversicolor F. Muell.) Forests of South-Western Australia. J Ecol 76(4):1186–1203

    Google Scholar 

  • Odiwe AI, Muoghalu JI (2003) Litterfall dynamics and forest floor litter as influenced by fire in a secondary lowland rainforest in Nigeria. Trop Ecol 44:241–249

    Google Scholar 

  • Ojo AF, Kadeba TOS, Kayode J (2010) Litter mass and nutrient dynamics in a transformed rainforest ecosystem in Southwestern Nigeria. Bangladesh J Sci Ind Res 45(4):351–358

    Google Scholar 

  • Oladoye AO, Ola-Adams BA, Adedire MO (2010) Litterfall Dynamics in Leuceana Leucocephala (Lam) De Wit Plantation in the Nigerian Derived Savanna. ARPN Journal of Agricultural and Biological Science 5(2):31–38

    Google Scholar 

  • Old SM (1969) Microclimates, fire and plant production in an Illinois prairie. Ecol Monogr 34:355–384

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological system. Ecology 44:322–331

    Google Scholar 

  • Ovington JD (1962) Quantitative ecology and the woodland ecosystem concept. Adv Ecol Res 1:103–192

    Google Scholar 

  • Ovington JD (1965) Organic production, turnover and mineral cycling in woodlands. Biol Rev 40(3):295–336

    Google Scholar 

  • Ovington JD (1968) Some factors affecting nutrient distribution within ecosystems. In: Eckardt FE (ed) Functioning of terrestrial ecosystems of the primary production level. Proc Copen Symp, UNESCO, Paris

    Google Scholar 

  • Oziegbe MB, Muoghalu JI, Oke1 SO (2011) Litterfall, precipitation and nutrient fluxes in a secondary lowland rain forest in Ile-Ife, Nigeria. Acta Botanica Brasilica 25(3):664–671

    Google Scholar 

  • Palm CA, Houghton RA, Melillo JM, Skole DL (1986) Atmospheric carbon dioxide from deforestation in southeastern Asia. Biotropica 18(3):177–188

    Google Scholar 

  • Pande PK (2005) Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop Ecol 46(2):229–239

    Google Scholar 

  • Pande PK, Meshram PB, Banerjee SK (2002) Litter production and nutrient return in tropical dry deciduous teak forests of Satpura plateau in central India. Trop Ecol 43(2):337–344

    CAS  Google Scholar 

  • Parker GG (1983) Throughfall and Stemflow in the Forest Nutrient Cycle. Adv Ecol Res 13:57–133

    Google Scholar 

  • Pastor J, Bockheim JG (1984) Distribution and cycling of nutrients in an aspen-mixed-hardwood-spodosol ecosystem in Northern Wisconsin. Ecology 65(2):339–353

    CAS  Google Scholar 

  • Pausas JG (1997) Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees. J Veg Sci 8:643–650

    Google Scholar 

  • Pierce RS, Martin CW, Reeves C, Likens GE, Bormann FH (1972) Nutrient losses from clearcutting in New Hampshire, p. 285–295. In: Natl Symp on Watersheds in Transition, Amer Water Resources Assoc Proc, Series No. 14

    Google Scholar 

  • Poggiani F (1985) Nutrient cycling in Eucalyptus and Pinus plantations ecosystems: silvicultural implications. IPEF 31:33–40

    Google Scholar 

  • Potter CS, Ragsdale HL, Berish CW (1987) Resorption of foliar nutrients in a regenerating southern Appalachian forest. Oecologia 73:268–271

    Google Scholar 

  • Pragasan LA, Parthasarathy N (2005) Litter production in tropical dry evergreen forests of south India in relation to season, plant life-forms and physiognomic groups. Curr Sci 88(8):1255

    Google Scholar 

  • Prescott CE (2005) Decomposition and Mineralization of Nutrients from Litter and Humus. In Bassiri Rad H (ed) Nutrient Acquisition by Plants: An Ecological Perspective. Ecological Studies 181:15–41

    Google Scholar 

  • Pritchett WL, Fisher RF (1987) Properties and management of forest soils. 2d ed. John Wiley & Sons, New York

    Google Scholar 

  • Proctor J (1984) Tropical forest litterfall. II. The data set. In: Chadwick AC, Sutton SL (eds) Tropical rain forest: ecology and management, supplementary volume. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Proctor J (1987) Nutrients cycling in primary and old secondary, rainforests. Appl Geogr 7:135–152

    Google Scholar 

  • Proe MF, Millard P (1995) Effect of P supply upon seasonal growth and internal cycling of P in Sitka pruce (Picea sitchensis (Bong.) Carr.) seedlings. Plant Soil 168-169:313–317

    Google Scholar 

  • Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Google Scholar 

  • Ranger J, Colin-Belgrand MC (1996) Nutrient dynamics of chestnut tree (Castanea sativa Mill.) coppice stands. For Ecol Manag 86:259–277

    Google Scholar 

  • Ranger J, Gelhaye D (2001) Belowground biomass and nutrient content in a 47-year-old Douglas-fir plantation. Ann For Sci 58:423–430

    Google Scholar 

  • Ranger J, Nys C, Bouchon J (1990) Les relations entre la fertilite du sol, la productin et l´utilisation d´eléments nutritifs dans les taillis de châtaigniers. Acta Oecol 11:487–501

    Google Scholar 

  • Rapp M (1969) Production de litiere et apport au d elements mineraux dans deux Ecosystemes mediterraneens de la foret de Quercus ilex et la garrigue de Q. coccifera. Oecol Plant 4:377–410

    Google Scholar 

  • Rapp M, Santa-Regina I, Rico M, Gallego HA (1999) Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forest. For Ecol Manag 119:39–49

    Google Scholar 

  • Redmann RE (1975) Production ecology of grassland plant communities in western North Dakota. Ecol Monogr 45:83–106

    Google Scholar 

  • Reichle DE (1981) Dynamic Properties of Ecosystems. Cambridge University

    Google Scholar 

  • Reinaldo IB, Philip MF (1995) Carbon and Nutrient Flows in an Amazonian forest. Fine litter production and composition at Apiau, Roraima, Brazil

    Google Scholar 

  • Reiners WA (1972) Nutrient content of canopy throughfall in three Minnesota forests. Oikos 23:14–22

    CAS  Google Scholar 

  • Reiners WA, Reiners NM (1970) Energy and nutrient dynamics of forest floors in three Minnesota forests. J Ecol 58:497–519

    Google Scholar 

  • Robert B, Caritat A, Bertoni L, Vilar L, Molinas M (1996) Nutrient content and seasonal fluctuations in the leaf component of cork oak (Quercus suber L.) litterfall. Vegetatio 122:29–35

    Google Scholar 

  • Rochow JI (1974) Litter fall relations in a Missouri forest. Oikos 25:80–85

    Google Scholar 

  • Rodin LE, Basilevich NI (1967) Production and mineral cycling in terrestrial vegetation (English translation ed. by Fogg GE). Oliver and Boyd, Edinburgh-London

    Google Scholar 

  • Rubilar RA, Allen HL, Kelting DL (2005) Comparison of biomass and nutrient content equations for successive rotations of loblolly pine plantations on an Upper Coastal Plain Site. For Ecol Manage 28:548–564

    CAS  Google Scholar 

  • Rutkowski DR, Stottlemyer R (1993) Composition, biomass and nutrient distribution in mature northern hardwood and boreal forest stands, Michigan. Am Midl Nat 130:13–30

    Google Scholar 

  • Ryan DF, Bormann FH (1981) Nutrient resorption in northern hardwood forests. BioScience 32:29–32

    Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96(3):293–299

    Google Scholar 

  • Salazar S, Sanchez LE, Galindo P, Santa-Regina I (2010) Above-ground tree biomass equations and nutrient pools for a paraclimax chestnut stand and for a climax oak stand in the Sierra de Francia Mountains, Salamanca, Spain. Scientific Research and Essays 5(11):1294–1301

    Google Scholar 

  • Sanches L, Valentini CMA, Junior OBP, Nogueira J, Vourlitis GL, Biudes MS, Silva CJ da, Bambi P, Lobo FA (2008) Seasonal and interannual litter dynamics of a tropical semideciduous forest of the southern Amazon Basin, Brazil. J Geophys Res 113:1–9

    Google Scholar 

  • Sanford RL Jr. (1985) Root ecology of mature and successional Amazon forests. PhD Thesis. Univ Calif, Berkeley, CA

    Google Scholar 

  • Santa-Regina I (2000) Biomass estimation and nutrient pools in tour Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. For Ecol Manag 132:127–141

    Google Scholar 

  • Santa-Regina I, Tarazona T (2000) Nutrient return to the soil through litterfall and throughfall under beech and pine stands of Sierra de la Demanda, Spain. Arid Soil Res Rehab 14(3):239–252

    Google Scholar 

  • Santa-Regina I, Tarazona T (2001) Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann For Sci 58:301–314

    Google Scholar 

  • Santa-Regina I, Leonardi S, Rapp M (2000) Organic matter and foliar nutrient dynamics in Castanea sativa Mill. Coppice stands of southern Europe. Ecol Med 26(1-2):71–81

    Google Scholar 

  • Santiago LS, Schuur EAG, Silvera K (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. J Trop Ecol 21:461–470

    Google Scholar 

  • Satchell JE (1974) Litter interface of animate/inanimate matter. In: Dickinson CH, Pugh CJF (eds) Biology of Plant Litter Decomposition. Academic Press, New York

    Google Scholar 

  • Saunders MR, Fraver S, Wagner RG (2011) Nutrient concentration of down woody debris in mixedwood forests in central Maine, USA. Silva Fennica 45(2):197–210

    Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: An Analysis of Global Change. Academic Press, New York

    Google Scholar 

  • Segura M (2005) Allometric models for tree volume and total aboveground biomass in tropical humic forest in Costa Rica. Biotrop 37(1):2–8

    Google Scholar 

  • Shanmughavel P, Peddappaiah RS, Muthukumar T (2000) Litter production and nutrient return in Bambusa bambos plantation. J Sustain For 11(3):71–82

    Google Scholar 

  • Shanmughavel P, Sha L, Zheng Z, Cao M (2001) Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, Southeast China. Part I: Tree species:nutrient distribution and uptake. Bioresour Technol 80:163–170

    PubMed  CAS  Google Scholar 

  • Siddiqui PJA, Qasim R (1990) Litter Production and Physico-Chemical Conditions in Mangrove, Avicennia Marina (Forsk.) Vierh., Swamps At Karachi Back Waters and Bakran Creek. Journal of Islamic Academy of Sciences 3:15−21

    Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins

    Google Scholar 

  • Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43(4):449–528

    CAS  Google Scholar 

  • Sollins P, Grier CC, McCorison FM, Cromack K, Fogel Jr R, Fredriksen RL (1980) The internal element cycles of an old-growth Douglas-fir ecosystem in Western Oregon. Ecol Mono 50(3):261–285

    Google Scholar 

  • Son Y, Park IH, Yi MJ, Jin HO, Kim DY, Kim RH, Hwang JK (2004) Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecol Res 19:21–28

    Google Scholar 

  • Songwe NC, Okali DUU, Fasehun FE (1995) Litter decomposition and nutrient release in a tropical rainforest, Southern Bakundu Forest Reserve, Cameroon. J Trop Ecol 11:333–350

    Google Scholar 

  • Staaf H (1980) Release of plant nutrients from decomposing leaf litter in a South Swedish beech forest. Holarct Ecol 3:129–136

    Google Scholar 

  • Staaf H (1982) Plant nutrient changes in beech leaves during senescenceas influenced by site characteristics. Oecol Plant 3:161–170

    Google Scholar 

  • Staaf H, Berg B (1977) Mobilization of plant nutrients in a Scots pine forest moor in central Sweden. Silva Fenn 11:210–216

    Google Scholar 

  • Stachurski A, Zimka JR (1975) Leaf fall and the rate of litter decay in some forest habitats. Ekol Pol 23:103–108

    Google Scholar 

  • Stachurski A, Zimka JR (1975) Methods of studying forest ecosystems: leaf area, leaf production and withdrawal of nutrients from leaves of trees. Ekol Pol 23:637–648

    Google Scholar 

  • Staelens J, Ameloot N, Almonacid L, Padilla E, Boeckx P, Huygens D, Verheyen K, Oyarzún C, Godoy R (2011) Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile. Revista Chilena De Historia Natural 84(1):125–141

    Google Scholar 

  • Stenlid G (1958) Salt losses and redistribution of salts in higher plants. Plant Physiol 4:615–637

    Google Scholar 

  • Svoboda M, Matejka K, Kopacek J (2006) Biomass and element pools of selected spruce trees in the catchments of Plesne and Certovo Lakes in the Sumava Mts. J For Sci 52(10):482–495

    CAS  Google Scholar 

  • Svoboda M, Fraver S, Janda P, Baèe R, Zenáhlíková J (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manag 260(5):707–714

    Google Scholar 

  • Swamy HR, Proctor J (1994) Litterfall and nutrient cycling in four rainforests in the Sringeri area of the Indian Western Ghats. Global Ecology and Biogeography Letters 4:155–165

    Google Scholar 

  • Swift MJ, Smith RA, Perfect JJ (1981) Decomposition and mineral nutrient dynamics of plant litter in a regenerating bush—fallow in subhumid tropical Nigeria. J Ecol 69:981–995

    Google Scholar 

  • Tamm CO (1951) Removal of plant nutrients from tree crowns by rain. Physiol Plant (4):184–188

    Google Scholar 

  • Tamm CO (1953) Growth, yield and nutrition in carpets of forest moss (Hylocomium splendens). Meddr Stat Skogsforskningsinst 43:1–140

    Google Scholar 

  • Tanner EVJ (1981) The decomposition of leaf litter in Jamaican montane rain forests. J Ecol 69:263–275

    Google Scholar 

  • Thomas WA (1968) Decomposition of loblolly pine needles with and without the addition of dogwood leaves. Ecology 49:568–571

    Google Scholar 

  • Titus JS (1989) Nitrogen recycling in the apple (Malus domestica Borkh.). Annales des Sciences Forestie Res 46 (suppl): 654–659

    Google Scholar 

  • Titus JS, Kang SM (1980) Nitrogen metabolism, translocation and recycling in apple trees. Horticultural Reviews: 204–246

    Google Scholar 

  • Tokarar F, Krekulova E (2004) Aboveground biomass production and leaf area index in various types of chestnut (Castanea sativa Mill.) stands in Slovakia. Ekologia (Bratislava) 23(4):342–352

    Google Scholar 

  • Triadiati S, Tjitrosemito E, Guhardja, Sudarsono I, Qayim, Leuschner C (2011) Litterfall production and leaf-litter decomposition at natural forest and cacao agroforestry in Central Sulawesi, Indonesia. Asian J Biol Sci 4:221–234

    Google Scholar 

  • Tsutsumi T, Yoda K, Sahunalu P, Dhanmanonda P, Prachaiyo B (1983) Forest: Felling, burning and regeneration. In: Youngberg CT, Davey CB (eds) Tree Growth and Forest Soils. Proceeding of the Third North America Forest Soils Conference, Oregon State University Press, USA

    Google Scholar 

  • Turner J, Singer MJ (1976) Nutrient distribution and cycling in a sub-alpine coniferous forest ecosystem. J Appl Ecol 13:295–301

    CAS  Google Scholar 

  • Turner J, Cole DW, Gessel SP (1976) Mineral nutrient accumulation and cycling in a stand of red alder (Alnus rubra). J Ecol 64:965–974

    CAS  Google Scholar 

  • Ukonmaanaho L, Merila P, Nojd P, Nienminen TM (2008) Litterfall production and nutrient return to the forest floor in Scotspine and Norway spruce stands in Finlanl. Boreal Env Res 13(B):67–91

    CAS  Google Scholar 

  • Uri V, Tullus H, Lohmus K (2003) Nutrient allocation, accumulation and above-ground biomass in grey alder and hybrid alder plantations. Silva Fenn 37(3):301–311

    Google Scholar 

  • Usotsev VA, Hoffman CW (1997) Combining harvest sample data and inventory data to estimate forest biomass. Scand J For Res 12(3):273–279

    Google Scholar 

  • Van L, David H, Waide JB,   Michael JT (1984) Biomass and nutrient content of a 41-year-old Loblolly Pine (Pinus taeda L.) plantation on a poor site in South Carolina. For Sci 30(2):395–404

    Google Scholar 

  • Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7(3):319–336

    Google Scholar 

  • Vital ART, Guerrini IA, Franken WK (2004) Produção de serapilheira e ciclagem de nutrientes de uma floresta estacional semidecidual em zona ripária. Revista Árvore 28:793–800

    Google Scholar 

  • Vitousek (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Google Scholar 

  • Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bio Sci 25:376–380

    CAS  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Google Scholar 

  • Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol Mongr 52:155–177

    CAS  Google Scholar 

  • Vitousek PM, Fahey T, Johnson DW, Swift MJ (1988) Element interactions in forest ecosystems: succession, allometry, and in-put-output budgets. Biogeochemistry 5:7–34

    CAS  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Keyes MR (1983) Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecol Monogr 53:139–157

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover and nutrient dynamics of the above-and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Google Scholar 

  • Voigt GK (1960) Alternation of the composition of rainwater by trees. Am Mid-land Nat 63(2):321–326

    Google Scholar 

  • Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297(1-2):201–211

    CAS  Google Scholar 

  • Wells CG, Metz LJ (1963) Variation in nutrient content of Loblolly pine needles with season, age, soil and position on the crown. Soil Sci Soc Am Proc 27:90–93

    Google Scholar 

  • Westman WE (1975) Edaphic climax patterns of the pygmy forest region of California. Ecol. Monog 45:109–135

    Google Scholar 

  • Whitmore TC (1984) Tropical rainforests of the far east. Oxford University Press, London

    Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG (1974) The Hubbard Brook Ecosystem Study: forest biomass and production. Ecol Monogr 44:233–254

    Google Scholar 

  • Wiegert RG, Evans FC (1964) Primary production and disappearance of dead vegetation on an old field in southeastern Michigan. Ecology 45:49–63

    Google Scholar 

  • Will GM (1959) Nutrient return in litter and rainfall under some exotic conifer stands in New Zealand. New Zealand J Agric Res 2:719–734

    CAS  Google Scholar 

  • Williams ST, Gray TRG (1974) Decomposition of Litter on the Soil Surface. In: Dickinson CH, Pugh GJF (eds) Biology of Plant Litter Decomposition, Vol. 2. Academic Press, London

    Google Scholar 

  • Witherspoon JPJr, (1962) Cycling of cesium-134 in White Oak trees on sites of contrasting soil type and moisture. I. 1960 growing season. In: Ist National Symposium Radioecology, Fort Collins, Colorado. Reinhold, New York

    Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environmental conditions, microflora and microbial respiration. Ecology 47:194–201

    Google Scholar 

  • Witkamp M, Olson JS (1963) Breakdown of confined and non-confined oak litter. Oikos 14:138–147

    Google Scholar 

  • Wood TG (1976) The role of termites (Isoptera) in decomposition processes. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes, Blackwell Sci Pub Oxford

    Google Scholar 

  • Wood TE, Lawrence D, Clark DA (2006) Determinants of leaf litter nutrient cycling in a tropical rain forest: soil fertility versus topography. Ecosystems 9:1–11

    Google Scholar 

  • Woodwell GM, Marples TG (1968) The influence of chronic gamma ir-radiation on production and decay of litter and humus in an oak-pine forest. Ecology 49:456–464

    Google Scholar 

  • Woodwell GM, Whittaker RH, Houghton RA (1975) Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology 56:318–332

    CAS  Google Scholar 

  • Xu XN, Shibata H, Enoki T (2006) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: dynamics of mineral nutrients. J For Res 17(1):1–6

    Google Scholar 

  • Yamane I, Sato K (1971) Decay of litter of Miscanthus sinensis and Sasa palmata in Kawatabi IBP area. In: Numata M (ed) Grassland ecosystem studies. Jap Comm Int Biol Prog Grassland Project

    Google Scholar 

  • Yang H, Wang S, Zhang J, Fan B, Zhang W (2011) Biomass and nutrients of Pinus massoniana plantations in southern China: simulations for different managing practices. J Food. Agric Env 9(1):689–693

    Google Scholar 

  • Yang WQ, Wang KY, Kellomaki S, Gong H (2005) Litter dynamics of three subalpine forests in Western Sichuan. Pedosphere 15(5):653–659

    Google Scholar 

  • Yang YS, Guo JF, Chen GS, Xie JS, Gao R, Li Z, Jin Z (2005) Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry 78(4):403–415

    Google Scholar 

  • Youngberg CT (1966) Forest floors in Douglas-fir forests: 1. Dry weight and chemical properties. Soil Sci Amer Soc Proc 30:406–409

    CAS  Google Scholar 

  • Zhang P (1999) nutrient inputs from trees via throughfall, stemflow and Litterfall in an intercropping system. MS Thesis, The University of Guelph, Canada

    Google Scholar 

  • Zhao Q, Liu X, Zeng D (2011) Aboveground biomass and nutrient allocation in an age-sequence of Larix olgensis plantations. J For Res 22(1): 71−76

    Google Scholar 

  • Zheng Z, Shanmughavel P, Sha L, Cao M, Warren M (2006) Litter decomposition and nutrient release in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Biotropica 38(3):342–347

    Google Scholar 

  • Zhou GY, Guan LL, Wei XH, Zhang DQ, Zhang QM, Yan JH, Wen DZ, Liu JX, Liu SG, Huang ZL, Kong GH, Mo JM, Yu QF (2007) Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecol 188:77–89

    Google Scholar 

  • Zianis D, Mencuccini M (2003) Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalized equations for Fagus sp. Ann For Sci 60:439–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Towhid Osman .

Study Questions

Study Questions

  1. 1.

    Explain biomass, aboveground biomass, standing biomass, forest floor biomass, and litter biomass. How does the amount of standing biomass production differ among sites of varying fertility?

  2. 2.

    Discuss nutrient concentration and nutrients retained in biomass of forests. How can nutrient use efficiency be increased?

  3. 3.

    Define nutrient cycling and nutrient recycling. Discuss the process of nutrient recycling in forest ecosystems.

  4. 4.

    Narrate the significance of litterfall. Discuss factors affecting litterfall. Explain importance of throughfall and stemflow in nutrient recycling.

  5. 5.

    Explain litter decomposition as a two-stage phenomenon. Discuss factors affecting litter decomposition and nutrient release.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osman, K. (2013). Nutrient Dynamics in Forest Soil. In: Forest Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-02541-4_6

Download citation

Publish with us

Policies and ethics