Skip to main content

On Stability of Inhomogeneous Elastic Cylinder of Micropolar Material

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 45))

Abstract

The present research is dedicated to the buckling analysis of nonlinearly elastic rods made of porous materials. In the framework of a general stability theory for three-dimensional bodies, we have studied the stability of a circular micropolar rod subject to axial compression and external pressure. It is assumed that the elastic properties of the rod vary along the radius. Applying linearization the neutral equilibrium equations are derived, which describe the perturbed state of a rod. These linearized equations have been solved numerically for a few commonly used porous materials. The critical curves and corresponding buckling modes have been found, and the stability regions have been constructed in the plane of loading parameters. Using these results, we have studied the influence of elastic properties as well as the rod size on the loss of stability. Special attention has been given to the analysis of how the pattern of variation for elastic properties of material affects the stability of a micropolar rod.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Article  MATH  Google Scholar 

  2. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  3. Banhart, J.: Manufacturing routes for metallic foams. J. Minerals 52(12), 22–27 (2000)

    Google Scholar 

  4. Banhart, M.F.A.J., Fleck, N.A. (eds.): Metal Foams and Porous Metal Structures. MIT, Bremen (1999)

    Google Scholar 

  5. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    Google Scholar 

  6. Degischer, H.P., Kriszt, B. (eds.): Handbook of Cellular metals. Production, Processing, Applications. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  7. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  8. Eremeyev, V.A., Zubov, L.M.: On the stability of elastic bodies with couple-stresses. Mech. Solids 29(3), 172–181 (1994)

    Google Scholar 

  9. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)

    Google Scholar 

  10. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  11. Green, A.E., Adkins, J.E.: Large Elastic Deformations and Non-Linear Continuum Mechanics. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  12. Kafadar, C.B., Eringen, A.C.: Micropolar media - I. The classical theory. Int. J. Eng. Sci 9, 271–305 (1971)

    Article  MATH  Google Scholar 

  13. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. (ed) Continuum models for materials with micro-structure, pp. 1–22. Wiley, New York (1995)

    Google Scholar 

  14. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  15. Lurie, A.I.: Non-linear Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  16. Maugin, G.A.: On the structure of the theory of polar elasticity. Phil. Trans. Royal Soc. Lond. A 356, 1367–1395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikitin, E., Zubov, L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51, 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ogden, R.W.: Non-Linear Elastic Deformations. Dover, Mineola (1997)

    Google Scholar 

  19. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46, 774–787 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sheydakov, D.N.: Stability of elastic cylindrical micropolar shells subject to combined loads. In: Pietraszkiewicz, W., Kreja, I. (eds.) Shell Structures: Theory and Applications, vol. 2, pp. 141–144. CRC Press, Boca Raton (2010)

    Google Scholar 

  22. Sheydakov, D.N.: Buckling of elastic composite rod of micropolar material subject to combined loads. In: Altenbach, H., Erofeev, V., Maugin, G. (eds.) Mechanics of Generalized Continua–From Micromechanical Basics to Engineering Applications, Advanced Structured Materials, vol.7, pp. 255–271. Springer, Berlin (2011)

    Google Scholar 

  23. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

  25. Zubov, L.M., Sheidakov, D.N.: The effect of torsion on the stability of an elastic cylinder under tension. PMM J. Appl. Math. Mech. 69(1), 49–56 (2005)

    Article  Google Scholar 

  26. Zubov, L.M., Sheidakov, D.N.: Instability of a hollow elastic cylinder under tension, torsion, and inflation. Trans. ASME J. Appl. Mech. 75(1), 011,002-1–011,002-6 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 12-01-00038-a and 12-01-00811-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis N. Sheydakov .

Editor information

Editors and Affiliations

Appendix: Scalar Formulation of the Linearized Boundary Value Problem

Appendix: Scalar Formulation of the Linearized Boundary Value Problem

With respect to the representations (2), (3), (15), the expressions for the linearized stretch tensor \({{\mathbf {\mathsf{{Y}}}}}^\bullet \) and wryness tensor \({{\mathbf {\mathsf{{L}}}}}^\bullet \) have the form:

$$\begin{aligned} {{{\mathbf {\mathsf{{Y}}}}}}^\bullet&=\displaystyle \left( {\frac{\partial v_\varPhi }{\partial r}-{f}^{\prime }\omega _Z } \right) {\mathbf {e}}_r \otimes {\mathbf {e}}_\varphi + \frac{1}{r}\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi +f \omega _Z } \right) {\mathbf {e}}_\varphi \otimes {\mathbf {e}}_r \nonumber \\&\quad +\displaystyle \left( {\frac{\partial v_Z }{\partial r}+{f}^{\prime } \omega _\varPhi } \right) {\mathbf {e}}_r \otimes {\mathbf {e}}_z + \left( {\frac{\partial v_R }{\partial z}-\alpha \omega _\varPhi } \right) {\mathbf {e}}_z \otimes {\mathbf {e}}_r \\&\quad +\displaystyle \frac{1}{r}\left( {\frac{\partial v_Z }{\partial \varphi }-f \omega _R } \right) {\mathbf {e}}_\varphi \otimes {\mathbf {e}}_z + \left( {\frac{\partial v_\varPhi }{\partial z}+\alpha \omega _R } \right) {\mathbf {e}}_z \otimes {\mathbf {e}}_\varphi \nonumber \\&\quad +\displaystyle \frac{\partial v_R }{\partial r}{\mathbf {e}}_r \otimes {\mathbf {e}}_r +\frac{1}{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) {\mathbf {e}}_\varphi \otimes {\mathbf {e}}_\varphi +\frac{\partial v_Z }{\partial z}{\mathbf {e}}_z \otimes {\mathbf {e}}_z\nonumber \end{aligned}$$
(18)
$$\begin{aligned} {{{\mathbf {\mathsf{{L}}}}}}^\bullet&=\displaystyle \frac{\partial \omega _R }{\partial r}{\mathbf {e}}_r \otimes {\mathbf {e}}_r + \frac{1}{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) {\mathbf {e}}_\varphi \otimes {\mathbf {e}}_\varphi +\frac{\partial \omega _Z }{\partial z}{\mathbf {e}}_z \otimes {\mathbf {e}}_z \nonumber \\&\quad +\displaystyle \frac{\partial \omega _\varPhi }{\partial r}{\mathbf {e}}_r \otimes {\mathbf {e}}_\varphi +\frac{1}{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) {\mathbf {e}}_\varphi \otimes {\mathbf {e}}_r + \frac{\partial \omega _Z }{\partial r}{\mathbf {e}}_r \otimes {\mathbf {e}}_z \\&\quad +\displaystyle \frac{\partial \omega _R }{\partial z}{\mathbf {e}}_z \otimes {\mathbf {e}}_r +\frac{1}{r}\frac{\partial \omega _Z }{\partial \varphi }{\mathbf {e}}_\varphi \otimes {\mathbf {e}}_z +\frac{\partial \omega _\varPhi }{\partial z}{\mathbf {e}}_z \otimes {\mathbf {e}}_\varphi \nonumber \end{aligned}$$
(19)

According to relations (2), (4), (11), (12), (15), (18) (19), the components of the linearized Piola-type stress tensor \({{\mathbf {\mathsf{{D}}}}}^\bullet \) and couple stress tensor \({{\mathbf {\mathsf{{G}}}}}^\bullet \) are written as follows:

$$\begin{aligned} {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_R&= \left( {\lambda +\chi } \right) \frac{\partial v_R }{\partial r}\,\,+\frac{\lambda }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\lambda \frac{\partial v_Z }{\partial z} \nonumber \\[-0.5ex] \!\!\!\!\!\! {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \left( {\mu +\kappa } \right) \frac{\partial v_\varPhi }{\partial r}+\frac{\mu }{r}\!\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi }\!\right) \!+\left[ \mu \left( {{f}^{\prime }+\frac{f}{r}} \right) +\lambda s-\chi \right] \omega _Z \nonumber \\[-0.5ex] {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \left( {\mu +\kappa } \right) \frac{\partial v_Z }{\partial r}+\mu \frac{\partial v_R }{\partial z}-\left[ \mu \left( {{f}^{\prime }+\alpha } \right) +\lambda s-\chi \right] \omega _\varPhi \nonumber \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_R&= \frac{\mu +\kappa }{r}\!\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi } \right) +\mu \frac{\partial v_\varPhi }{\partial r}-\left[ \mu \left( {{f}^{\prime }+\frac{f}{r}} \right) +\lambda s-\chi \right] \omega _Z \nonumber \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \lambda \frac{\partial v_R }{\partial r}\,\,+\frac{\lambda +\chi }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\lambda \frac{\partial v_Z }{\partial z} \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \frac{\mu +\kappa }{r}\frac{\partial v_Z }{\partial \varphi }+\mu \frac{\partial v_\varPhi }{\partial z}+\left[ \mu \left( {\frac{f}{r} +\alpha } \right) +\lambda s-\chi \right] \omega _R \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_R&= \left( {\mu +\kappa } \right) \frac{\partial v_R }{\partial z}+\mu \frac{\partial v_Z }{\partial r}+\left[ \mu \left( {{f}^{\prime }+\alpha } \right) +\lambda s-\chi \right] \omega _\varPhi \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \left( {\mu +\kappa } \right) \frac{\partial v_\varPhi }{\partial z}+\frac{\mu }{r}\frac{\partial v_Z }{\partial \varphi }-\left[ \mu \left( {\frac{f}{r} +\alpha } \right) +\lambda s-\chi \right] \omega _R \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{D}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \lambda \frac{\partial v_R }{\partial r}\,\,+\frac{\lambda }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\left( {\lambda +\chi } \right) \frac{\partial v_Z }{\partial z} \nonumber \end{aligned}$$
(20)
$$\begin{aligned} {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_R&= (\gamma _1 +\gamma _2 +\gamma _3)\frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma _1 }{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +\gamma _1 \frac{\partial \omega _Z }{\partial z} \nonumber \\[-0.5ex] {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \gamma _2 \frac{\partial \omega _\varPhi }{\partial r}+\frac{\gamma _3 }{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) \nonumber \\[-0.5ex] {\mathbf {e}}_r \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \gamma _2 \frac{\partial \omega _Z }{\partial r}+\gamma _3 \frac{\partial \omega _R }{\partial z} \nonumber \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_R&= \frac{\gamma _2 }{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) +\gamma _3 \frac{\partial \omega _\varPhi }{\partial r} \nonumber \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \gamma _1 \frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma _1 +\gamma _2 +\gamma _3}{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +\gamma _1 \frac{\partial \omega _Z }{\partial z} \\[-0.5ex] {\mathbf {e}}_\varphi \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \frac{\gamma _2 }{r}\frac{\partial \omega _Z }{\partial \varphi }+\gamma _3 \frac{\partial \omega _\varPhi }{\partial z} \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_R&= \gamma _2 \frac{\partial \omega _R }{\partial z}+\gamma _3 \frac{\partial \omega _Z }{\partial r} \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_\varPhi&= \gamma _2 \frac{\partial \omega _\varPhi }{\partial z}+\frac{\gamma _3 }{r}\frac{\partial \omega _Z }{\partial \varphi } \nonumber \\[-0.5ex] {\mathbf {e}}_z \cdot {{{\mathbf {\mathsf{{G}}}}}}^\bullet \cdot {\mathbf {e}}_Z&= \gamma _1 \frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma _1 }{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +(\gamma _1 +\gamma _2 +\gamma _3)\frac{\partial \omega _Z }{\partial z} \nonumber \end{aligned}$$
(21)

By taking into account the expressions (3), (6), (15), (16), (20), (21), we derive a scalar form of the linearized equilibrium equations (10)

$$\begin{aligned}&\left( {\lambda +\chi } \right) {V}^{\prime \prime }_R + \left( \lambda ^{\prime } +\chi ^{\prime }+\frac{\lambda +\chi }{r}\right) {V}^{\prime }_R -\frac{\lambda -\lambda ^{\prime }r+\left( {\mu +\kappa } \right) \zeta +\mu }{r^2}V_R \nonumber \\&\quad + \,\frac{n\left( {\lambda +\mu } \right) }{r}{V}^{\prime }_\varPhi - \frac{n\left( {\lambda - \lambda ^{\prime }r +3\mu +2\kappa } \right) }{r^2}V_\varPhi + \beta \left( {\lambda +\mu } \right) {V}^{\prime }_Z \nonumber \\&\quad + \,\beta \lambda ^{\prime }{V}_Z +\beta B_2 \varOmega _\varPhi -\frac{nB_3 }{r}\varOmega _Z =0 \nonumber \\[5pt]&\left( {\mu +\kappa } \right) {V}^{\prime \prime }_\varPhi -\frac{n\left( {\lambda +\mu } \right) }{r}{V}^{\prime }_R -\frac{n\left( {\lambda +\mu ^{\prime } r+ 3\mu +2\kappa } \right) }{r^2}V_R \nonumber \\&\quad + \,\left( \mu ^{\prime } +\kappa ^{\prime } + \frac{\mu +\kappa }{r}\right) {V}^{\prime }_\varPhi - \frac{\left( {\lambda +\mu } \right) n^2+\mu ^{\prime } r+\left( {\mu +\kappa } \right) \zeta }{r^2}V_\varPhi \nonumber \\&\quad - \,\frac{n\beta \left( {\lambda +\mu } \right) }{r}V_Z -\beta B_1 \varOmega _R +B_3 {\varOmega }^{\prime }_Z +B^{\;\prime }_3 {\varOmega }_Z =0 \nonumber \\[5pt]&\left( {\mu +\kappa } \right) {V}^{\prime \prime }_Z -\beta \left( {\lambda +\mu } \right) {V}^{\prime }_R -\frac{\beta \left( {\lambda +\mu ^{\prime } r + \mu } \right) }{r}V_R -\frac{n\beta \left( {\lambda +\mu } \right) }{r}V_\varPhi \nonumber \\&\quad + \,\left( \mu ^{\prime } +\kappa ^{\prime } + \frac{\mu +\kappa }{r}\right) {V}^{\prime }_Z -\left[ {\left( {\lambda +\mu } \right) \beta ^2+\frac{\zeta -1}{r^2}\left( {\mu +\kappa } \right) } \right] V_Z \nonumber \\&\quad + \,\frac{nB_1 }{r}\varOmega _R -B_2 {\varOmega }^{\prime }_\varPhi -\left( B^{\;\prime }_2 + \frac{B_2 }{r}\right) \varOmega _\varPhi =0 \\[5pt]&\gamma {\varOmega }^{\prime \prime }_R +\left( \gamma ^{\;\prime }+\frac{\gamma }{r}\right) {\varOmega }^{\prime }_R -\left[ {\frac{\gamma -\gamma ^{\;\prime }_1 r+\gamma _2 \left( {\zeta -1} \right) }{r^2}-\left( {\frac{f}{r}+\alpha } \right) B_1 } \right] \varOmega _R \nonumber \\&\quad - \,\frac{n\left( {\gamma -\gamma _2 } \right) }{r}{\varOmega }^{\prime }_\varPhi +\frac{n\left( {\gamma -\gamma ^{\;\prime }_1 r +\gamma _2 } \right) }{r^2}\varOmega _\varPhi -\beta \left( {\gamma -\gamma _2 } \right) {\varOmega }^{\prime }_Z \nonumber \\&\quad - \,\beta \gamma ^{\;\prime }_1{\varOmega }_Z-\beta B_1 V_\varPhi +\frac{nB_1 }{r}V_Z=0 \nonumber \\[5pt]&\gamma _2 {\varOmega }^{\prime \prime }_\varPhi +\frac{n\left( {\gamma -\gamma _2 } \right) }{r}{\varOmega }^{\prime }_R +\frac{n\left( {\gamma + \gamma ^{\;\prime }_3 r+ \gamma _2 } \right) }{r^2}\varOmega _R +\left( \gamma ^{\;\prime }_2 + \frac{\gamma _2 }{r}\right) {\varOmega }^{\prime }_\varPhi \nonumber \\&\quad - \,\left[ {\frac{\left( {\gamma -\gamma _2 } \right) n^2+\gamma ^{\;\prime }_3 r+\gamma _2 \zeta }{r^2}-\left( {{f}^{\prime }+\alpha } \right) B_2 } \right] \varOmega _\varPhi \nonumber \\&\quad - \,\frac{n\beta \left( {\gamma -\gamma _2 } \right) }{r}\varOmega _Z +\beta B_2 V_R +B_2 {V}^{\prime }_Z =0 \nonumber \\[5pt]&\gamma _2 {\varOmega }^{\prime \prime }_Z +\beta \left( {\gamma -\gamma _2 } \right) {\varOmega }^{\prime }_R +\frac{\beta \left( {\gamma + \gamma ^{\;\prime }_3 r -\gamma _2 } \right) }{r}\varOmega _R - \frac{n\beta \left( {\gamma -\gamma _2 } \right) }{r}\varOmega _\varPhi \nonumber \\&\quad + \,\left( \gamma ^{\;\prime }_2 + \frac{\gamma _2 }{r}\right) {\varOmega }^{\prime }_Z -\left[ {\gamma \beta ^2+\frac{n^2}{r^2}\gamma _2 -B_3 \left( {{f}^{\prime }+\frac{f}{r}} \right) } \right] \varOmega _Z \nonumber \\&\quad - \,\frac{nB_3 }{r}V_R -B_3 {V}^{\prime }_\varPhi -\frac{B_3 }{r}V_\varPhi =0 \nonumber \end{aligned}$$
(22)

Here the following notations are used:

$$\begin{aligned} \gamma =\gamma _1 +\gamma _2 +\gamma _3, \qquad \zeta =n^2+r^2\beta ^2+1 \end{aligned}$$
$$\begin{aligned} B_1&=\mu \left( {\frac{f}{r} +\alpha } \right) +\lambda s-\chi , \\ B_2&=\mu \left( {{f}^{\prime }+\alpha } \right) +\lambda s-\chi , \\ B_3&=\mu \left( {{f}^{\prime }+\frac{f}{r}} \right) +\lambda s-\chi \end{aligned}$$

The scalar representation of the linearized boundary conditions (13) on the lateral surface of the rod is written as:

$$\begin{aligned}&\left[ {\lambda (r_0) +\chi (r_0) } \right] {V}^{\prime }_R(r_0) + \frac{\lambda (r_0) +\alpha p}{r_0 }\left[ {V_R(r_0) +nV_\varPhi (r_0) } \right] \nonumber \\&\quad + \,\beta \left[ \lambda (r_0) +p \frac{f(r_0)}{r_0}\right] V_Z(r_0) =0 \nonumber \\&\left[ {\mu (r_0) +\kappa (r_0) } \right] {V}^{\prime }_\varPhi (r_0) + \frac{\alpha p-\mu (r_0) }{r_0 }\left[ {nV_R(r_0) +V_\varPhi (r_0) } \right] +B_3(r_0) \varOmega _Z(r_0) =0 \nonumber \\&\left[ {\mu (r_0) +\kappa (r_0) } \right] {V}^{\prime }_Z(r_0) +\beta \left[ p \frac{f(r_0)}{r_0}-\mu (r_0) \right] V_R(r_0)-B_2(r_0) \varOmega _\varPhi (r_0) =0 \nonumber \\&\gamma (r_0) {\varOmega }^{\prime }_R(r_0) +\frac{\gamma _1(r_0) }{r_0 }\left[ {\varOmega _R(r_0) -n \varOmega _\varPhi (r_0) } \right] -\beta \gamma _1(r_0) \varOmega _Z(r_0) =0 \nonumber \\&\frac{\gamma _3(r_0) }{r_0 }\left[ {n\varOmega _R(r_0) -\varOmega _\varPhi (r_0) } \right] +\gamma _2(r_0) {\varOmega }^{\prime }_\varPhi (r_0) =0 \nonumber \\&\beta \gamma _3(r_0) \varOmega _R(r_0) +\gamma _2(r_0) {\varOmega }^{\prime }_Z(r_0) =0 \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheydakov, D.N. (2015). On Stability of Inhomogeneous Elastic Cylinder of Micropolar Material. In: Altenbach, H., Mikhasev, G. (eds) Shell and Membrane Theories in Mechanics and Biology. Advanced Structured Materials, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-02535-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02535-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02534-6

  • Online ISBN: 978-3-319-02535-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics